使用ROS C ++的新型控制和软件架构通过UAV引入了具有安装深度相机的对象拦截,没有外部辅助。轨迹预测中的现有工作侧重于使用像运动捕捉房间的外壳工具,以拦截抛出物体。本研究设计了UAV架构,以完全在板上能够使用深度摄像机和点云处理来实现对象拦截。该架构使用迭代轨迹预测算法,以适用于乒乓球的非推进物体。讨论了对象拦截的各种路径规划方法及其相应的场景,在凉亭中进行评估和模拟。成功的模拟举例说明了使用所提出的架构为拦截互通对象的车载自主权的潜力。
translated by 谷歌翻译
分析和区分网络协议流量的能力对于网络资源管理来说至关重要,以通过电信提供差异化​​服务。自动化协议分析(APA)至关重要,以显着提高效率,减少对人类专家的依赖。在APA中群集未知协议有许多自动化的无监督方法。但是,许多这样的方法没有使用不同的测试数据集充分探索。因此,未能展示泛化的鲁棒性。本研究提出了一种综合框架,以评估APA中的特征提取和聚类方法的各种组合。它还提出了一种自动选择数据集依赖模型参数的新颖方法,用于特征提取,从而提高性能。新颖的基于田间的象形化方法的有希望的结果也导致我们对APA中未知协议的特征提取和聚类的新型自动混合方法提出。我们所提出的混合方法在不同的测试数据集中的9个中的7个中最佳地进行了最佳,从而显示宽大,以概括不同的未知协议。它还优于所有测试数据集中的最先进的开源APA工具中的无监督聚类技术。
translated by 谷歌翻译
最近在计算机视觉和认知推理中的工作引起了越来越多地通过了违反了合成数据集中的预期(voe)范式。受婴儿心理学的启发,研究人员现在正在评估模型的标签场景的能力,只有预期的场景知识。然而,物理推理中现有的基于VOE的3D数据集主要提供似乎没有启发式或归纳偏差的视觉数据。物理推理的认知模型揭示婴儿创造了对象和互动的高级抽象表示。利用这一知识,我们建立了通过策划具有因果关系和规则的地面真理启发式标签的新型大型合成3D VoO数据集来研究体力学推理的基准。为了验证我们的数据集五个事件的物理推理,我们基准和分析人类性能。我们还提出了对象文件的物理推理网络(OFPR-NET),它利用DataSet的新型启发式机构来胜过我们的基线和消融模型。 OFPR-NET在学习替代物理现实方面也是灵活的,展示其能够在物理推理中学习普遍因果关系,以创建具有更好可解释性的系统。
translated by 谷歌翻译
最近在认知推理和计算机愿景中的工作在合成数据集中违反期望(voe)范式的违反期望(voe)范式的越来越受欢迎。研究人员在婴儿心理学中受到影响,研究人员已经开始评估模型的能力,以歧视预期和令人惊讶的场景,作为其推理能力的迹象。物理推理中现有的基于VOE的3D数据集仅提供视觉数据。然而,心理学家的现有认知模型揭示婴儿创造了对象和互动的高级抽象表示。关于这一知识,我们提出了禽兽:基于合成的3D VOE的数据集,呈现来自多个新型子类别的刺激,用于五种事件的物理推理。与现有工作相比,Avoe武装有抽象特征和规则的地面真理标签,增强到视觉数据,为物理推理任务中的高级符号预测铺平了道路。
translated by 谷歌翻译
Inspired by strategies like Active Learning, it is intuitive that intelligently selecting the training classes from a dataset for Zero-Shot Learning (ZSL) can improve the performance of existing ZSL methods. In this work, we propose a framework called Diverse and Rare Class Identifier (DiRaC-I) which, given an attribute-based dataset, can intelligently yield the most suitable "seen classes" for training ZSL models. DiRaC-I has two main goals - constructing a diversified set of seed classes, followed by a visual-semantic mining algorithm initialized by these seed classes that acquires the classes capturing both diversity and rarity in the object domain adequately. These classes can then be used as "seen classes" to train ZSL models for image classification. We adopt a real-world scenario where novel object classes are available to neither DiRaC-I nor the ZSL models during training and conducted extensive experiments on two benchmark data sets for zero-shot image classification - CUB and SUN. Our results demonstrate DiRaC-I helps ZSL models to achieve significant classification accuracy improvements.
translated by 谷歌翻译
Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
translated by 谷歌翻译
Opinion mining is the branch of computation that deals with opinions, appraisals, attitudes, and emotions of people and their different aspects. This field has attracted substantial research interest in recent years. Aspect-level (called aspect-based opinion mining) is often desired in practical applications as it provides detailed opinions or sentiments about different aspects of entities and entities themselves, which are usually required for action. Aspect extraction and entity extraction are thus two core tasks of aspect-based opinion mining. his paper has presented a framework of aspect-based opinion mining based on the concept of transfer learning. on real-world customer reviews available on the Amazon website. The model has yielded quite satisfactory results in its task of aspect-based opinion mining.
translated by 谷歌翻译
Zero-shot detection (ZSD) is a challenging task where we aim to recognize and localize objects simultaneously, even when our model has not been trained with visual samples of a few target ("unseen") classes. Recently, methods employing generative models like GANs have shown some of the best results, where unseen-class samples are generated based on their semantics by a GAN trained on seen-class data, enabling vanilla object detectors to recognize unseen objects. However, the problem of semantic confusion still remains, where the model is sometimes unable to distinguish between semantically-similar classes. In this work, we propose to train a generative model incorporating a triplet loss that acknowledges the degree of dissimilarity between classes and reflects them in the generated samples. Moreover, a cyclic-consistency loss is also enforced to ensure that generated visual samples of a class highly correspond to their own semantics. Extensive experiments on two benchmark ZSD datasets - MSCOCO and PASCAL-VOC - demonstrate significant gains over the current ZSD methods, reducing semantic confusion and improving detection for the unseen classes.
translated by 谷歌翻译
Large pretrained Transformer-based language models like BERT and GPT have changed the landscape of Natural Language Processing (NLP). However, fine tuning such models still requires a large number of training examples for each target task, thus annotating multiple datasets and training these models on various downstream tasks becomes time consuming and expensive. In this work, we propose a simple extension of the Prototypical Networks for few-shot text classification. Our main idea is to replace the class prototypes by Gaussians and introduce a regularization term that encourages the examples to be clustered near the appropriate class centroids. Experimental results show that our method outperforms various strong baselines on 13 public and 4 internal datasets. Furthermore, we use the class distributions as a tool for detecting potential out-of-distribution (OOD) data points during deployment.
translated by 谷歌翻译
基于标记的光运动捕获(OMC)系统和相关的肌肉骨骼(MSK)建模预测提供了能够洞悉体内关节和肌肉载荷的能力,并有助于临床决策。但是,OMC系统基于实验室,昂贵,需要视线。一种广泛使用的替代方案是惯性运动捕获(IMC)系统,该系统具有便携式,用户友好且相对较低的成本,尽管它不如OMC系统准确。不管选择运动捕获技术的选择,都需要使用MSK模型来获取运动学和动力学输出,这是一种计算昂贵的工具,越来越多地通过机器学习(ML)方法近似。在这里,我们提出了一种ML方法,将IMC数据映射到从OMC输入数据计算出的人类上限MSK输出。从本质上讲,我们试图从相对易于获取的IMC数据中预测高质量的MSK输出。我们使用同一受试者同时收集的OMC和IMC数据来训练ML(前馈多层感知器)模型,该模型可预测IMC测量值的基于OMC的MSK输出。我们证明我们的ML预测与所需的基于OMC的MSK估计值具有很高的一致性。因此,这种方法将有助于将基于OMC的系统不可行的“实验室到现场”的技术发挥作用。
translated by 谷歌翻译