While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
对黑暗时代和系外行星(Farside)进行无线电科学调查的遥远阵列是对Lunar Far Side的拟议任务概念,试图在100正方形的区域内部署和操作128双极化的阵列,偶极天线公里。所得的干涉射电望远镜将提供遥远恒星系统的前所未有的无线电图像,从而可以研究冠状质量弹出和能量颗粒事件的微弱无线电特征,还可以导致在其母星的居住区内检测到磁层周围的磁层。同时,Farside还将在一系列红移(z大约50-100)中以全球21厘米信号的全局信号来测量早期宇宙的“黑暗年龄”。阵列中的每个离散天线节点都通过通信和电源系绳连接到中央集线器(位于降落器)。节点是由Cold =可操作的电子设备驱动的,该电子设备连续监测极宽的频率(200 kHz至40 MHz),该频率超过了基于地球的望远镜的能力,该望远镜的功能由两个数量级。实现这种开创性的能力需要在月球表面上制定强大的部署策略,这对于现有高的TRL技术(演示或正在积极发展)是可行的,并且能够在下一代商业地面上传递到地​​表,例如蓝色Origin的蓝月亮着陆器。本文介绍了一种天线包装,放置和表面部署贸易研究,该研究利用了NASA的Jet Propuls实验室开发的束缚移动机器人的最新进展,该机器人用于部署平坦的,天线隔离的,带有光学通信和电源传输的磁带。功能。
translated by 谷歌翻译
仅使用单视2D照片的收藏集对3D感知生成对抗网络(GAN)的无监督学习最近取得了很多进展。然而,这些3D gan尚未证明人体,并且现有框架的产生的辐射场不是直接编辑的,从而限制了它们在下游任务中的适用性。我们通过开发一个3D GAN框架来解决这些挑战的解决方案,该框架学会在规范的姿势中生成人体或面部的辐射场,并使用显式变形场将其扭曲成所需的身体姿势或面部表达。使用我们的框架,我们展示了人体的第一个高质量的辐射现场生成结果。此外,我们表明,与未接受明确变形训练的3D GAN相比,在编辑其姿势或面部表情时,我们的变形感知训练程序可显着提高产生的身体或面部的质量。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
终身体验和学习知识导致对常见情况倾向于展开的情况的共同期望。这些知识使人们能够毫不费力地解释故事叙述并确定突出的事件。我们使用GPT-3研究自传式与想象故事中的事件叙事流程的差异,是迄今为止创建的最大神经语言模型之一。日记的故事是由人群撰写的关于最近经验丰富的活动或同一主题的想象事件。为了分析这些故事的事件的叙述流程,我们测量了句子*顺序*,它比较了与上述故事上下文的句子的概率。我们发现,想象的故事比自传故事更高的顺序,并且当自新召回时,自传故事的顺序高度较高。通过在故事句子中的事件的注释,我们发现故事类型包含类似的主要突出事件的比例,但自传故事是在事实上的小事中的密集。此外,与想象的故事相比,自传故事包含与第一人称,认知过程,时间,空间,数字,社交词和核心驱动器和需求相关的更多具体的单词和词汇。我们的调查结果强调了调查记忆和认知的机会,具有大规模的统计语言模型。
translated by 谷歌翻译
在安全关键方案中利用自主系统需要在存在影响系统动态的不确定性和黑匣子组件存在下验证其行为。在本文中,我们开发了一个框架,用于验证部分可观察到的离散时间动态系统,从给定的输入输出数据集中具有针对时间逻辑规范的未暗模式可分散的动态系统。验证框架采用高斯进程(GP)回归,以了解数据集中的未知动态,并将连续空间系统抽象为有限状态,不确定的马尔可夫决策过程(MDP)。这种抽象依赖于通过使用可重复的内核Hilbert空间分析以及通过离散化引起的不确定性来捕获由于GP回归中的错误而捕获不确定性的过渡概率间隔。该框架利用现有的模型检查工具来验证对给定时间逻辑规范的不确定MDP抽象。我们建立将验证结果扩展到潜在部分可观察系统的抽象结果的正确性。我们表明框架的计算复杂性在数据集和离散抽象的大小中是多项式。复杂性分析说明了验证结果质量与处理较大数据集和更精细抽象的计算负担之间的权衡。最后,我们展示了我们的学习和验证框架在具有线性,非线性和切换动力系统的几种案例研究中的功效。
translated by 谷歌翻译
在许多应用中,河流流速的快速可靠预测在包括洪水风险管理的许多应用中都很重要。浅水方程(SWES)通常用于此目的。然而,SWES的传统数值求解器是计算昂贵的并且需要高分辨率河床型材测量(沐浴浴)。在这项工作中,我们提出了一个两级过程,首先,使用主成分地质统计方法(PCGA)我们估计来自流速测量的浴序的概率密度函数,然后使用机器学习(ML)算法获得用于SWES的快速求解器。快速求解器使用从后浴碱分布的实现,并作为输入的规定范围的BCS。第一阶段允许我们预测流速而不直接测量浴约定。此外,我们将浴约集后部分布增强到更一般的分布,然后将它们作为第二阶段中的ML算法的输入作为输入。这允许求解器将未来的直接浴权测量结合到流速预测中,以提高精度,即使沐浴术与原始间接估计相比随时间变化而变化。我们提出并基准三种不同的求解器,称为PCA-DNN(主成分分析 - 深神经网络),SE(监督编码器)和SVE(监督变分编码器),并在Savannah River,Augusta,GA上验证它们。我们的研究结果表明,快速溶剂能够以良好的准确度预测不同的浴序和BCS的流速,以计算成本明显低于解决传统方法的全边界值问题的成本。
translated by 谷歌翻译
人工智能一直在全球转变产业和学术研究,研究软件开发也不例外。在研究软件开发生命周期的各个方面都应用了机器学习和深度学习,从新算法设计范例到软件开发过程。在本文中,我们讨论了我们对当今挑战和机会的看法,即AI在研究软件开发和工程师中展示了我们在佛罗里达大学的方法,正在为AI的新时代做好准备我们的劳动力。
translated by 谷歌翻译
我们提出了一个互动艺术项目,使Covid-19危机不可见的项目,并通过欢迎旋律的欢迎孤独,通过高级笑声综合方法创造和探索的联系。然而,在高质量听觉综合中的人类情绪反应的无条件产生仍然是一个公开问题,对艺术环境中这些方法的应用具有重要意义。我们开发了利用生成对抗网络(GANS)再现人笑声多样性的方法。当培训在不同笑声样本的数据集时,Lockganter会产生多样化,高质量的笑声样本,并学习适合情绪分析和新颖的艺术应用的潜在空间,如潜在混合/插值和情绪转移。
translated by 谷歌翻译
AI正在经历范式转变,随着模型的兴起(例如Bert,Dall-E,GPT-3),这些模型经过大规模的数据训练,并且可以适应广泛的下游任务。我们称这些模型基础模型来强调其至关重要但不完整的特征。该报告提供了基础模型的机会和风险的详尽说明,包括其功能(例如语言,愿景,机器人技术,推理,人类互动)和技术原则(例如,模型架构,培训程序,数据,系统,安全,安全性,评估,理论)对其应用(例如法律,医疗保健,教育)和社会影响(例如不平等,滥用,经济和环境影响,法律和道德考虑)。尽管基础模型基于标准的深度学习和转移学习,但它们的规模导致了新的新兴能力,以及它们在许多任务中的有效性都激发了同质化。同质化提供了强大的杠杆作用,但要求谨慎,因为基础模型的缺陷均由下游的所有适应模型继承。尽管即将广泛地部署基础模型,但我们目前对它们的工作方式,失败以及由于其新兴属性的影响而缺乏清晰的了解。为了解决这些问题,我们认为基础模型的许多批判性研究都需要与他们的基本社会技术性质相称。
translated by 谷歌翻译