深度学习体系结构的令人印象深刻的性能与模型复杂性的大量增加有关。需要对数百万个参数进行调整,并相应地进行训练和推理时间扩展。但是需要进行大规模的微调吗?在本文中,专注于图像分类,我们考虑了一种简单的转移学习方法利用预卷积特征作为快速内核方法的输入。我们将这种方法称为最佳调整,因为只有内核分类器经过培训。通过执行2500多个培训过程,我们表明这种最佳调整方法提供了可比的精度W.R.T.进行微调,训练时间较小在一个和两个数量级之间。这些结果表明,顶级调整为中小型数据集中的微调提供了有用的替代方法,尤其是在训练效率至关重要的情况下。
translated by 谷歌翻译
监测原位浮游生物的种群对于保留水生生态系统至关重要。浮游生物微生物实际上易受较小的环境扰动的影响,可以反映出随之而来的形态学和动力学修饰。如今,高级自动或半自动采集系统的可用性已允许生产越来越多的浮游生物图像数据。由于大量获得的数据和浮游生物的数字,因此,采用机器学习算法来对此类数据进行分类。为了应对这些挑战,我们提出了有效的无监督学习管道,以提供浮游生物微生物的准确分类。我们构建一组图像描述符,利用两步过程。首先,对预先训练的神经网络提取的功能进行了跨自动编码器(VAE)的培训。然后,我们将学习的潜在空间用作聚类的图像描述符。我们将方法与最新的无监督方法进行了比较,其中一组预定义的手工特征用于浮游生物图像的聚类。所提出的管道优于我们分析中包含的所有浮游生物数据集的基准算法,提供了更好的图像嵌入属性。
translated by 谷歌翻译
在本文中,我们介绍了一种新的方法来估计从一小组头关键点开始的单个图像中的人们的头部姿势。为此目的,我们提出了一种回归模型,其利用2D姿势估计算法自动计算的关键点,并输出由偏航,间距和滚动表示的头部姿势。我们的模型很容易实现和更高效地相对于最先进的最新技术 - 在记忆占用方面的推动和更小的速度更快 - 具有可比的准确性。我们的方法还通过适当设计的损耗功能提供与三个角度相关的异源间不确定性的量度;我们在误差和不确定值之间显示了相关性,因此可以在后续计算步骤中使用这种额外的信息来源。作为示例申请,我们解决了图像中的社交交互分析:我们提出了一种算法,以定量估计人们之间的互动水平,从他们的头部姿势和推理在其相互阵地上。代码可在https://github.com/cantarinigiorgio/hhp-net中获得。
translated by 谷歌翻译
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
We present temporally layered architecture (TLA), a biologically inspired system for temporally adaptive distributed control. TLA layers a fast and a slow controller together to achieve temporal abstraction that allows each layer to focus on a different time-scale. Our design is biologically inspired and draws on the architecture of the human brain which executes actions at different timescales depending on the environment's demands. Such distributed control design is widespread across biological systems because it increases survivability and accuracy in certain and uncertain environments. We demonstrate that TLA can provide many advantages over existing approaches, including persistent exploration, adaptive control, explainable temporal behavior, compute efficiency and distributed control. We present two different algorithms for training TLA: (a) Closed-loop control, where the fast controller is trained over a pre-trained slow controller, allowing better exploration for the fast controller and closed-loop control where the fast controller decides whether to "act-or-not" at each timestep; and (b) Partially open loop control, where the slow controller is trained over a pre-trained fast controller, allowing for open loop-control where the slow controller picks a temporally extended action or defers the next n-actions to the fast controller. We evaluated our method on a suite of continuous control tasks and demonstrate the advantages of TLA over several strong baselines.
translated by 谷歌翻译
Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP). From BERT to BLOOM, LLMs have surpassed state-of-the-art results in various natural language tasks such as question answering, summarization, and text generation. Many ongoing efforts focus on understanding LLMs' capabilities, including their knowledge of the world, syntax, and semantics. However, extending the textual prowess of LLMs to symbolic reasoning has been slow and predominantly focused on tackling problems related to the mathematical field. In this paper, we explore the use of LLMs for automated planning - a branch of AI concerned with the realization of action sequences (plans) to achieve a goal, typically executed by intelligent agents, autonomous robots, and unmanned vehicles. We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts. We also demonstrate the adaptability of Plansformer in solving different planning domains with varying complexities, owing to the transfer learning abilities of LLMs. For one configuration of Plansformer, we achieve ~97% valid plans, out of which ~95% are optimal for Towers of Hanoi - a puzzle-solving domain.
translated by 谷歌翻译
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.
translated by 谷歌翻译
When data is streaming from multiple sources, conventional training methods update model weights often assuming the same level of reliability for each source; that is: a model does not consider data quality of each source during training. In many applications, sources can have varied levels of noise or corruption that has negative effects on the learning of a robust deep learning model. A key issue is that the quality of data or labels for individual sources is often not available during training and could vary over time. Our solution to this problem is to consider the mistakes made while training on data originating from sources and utilise this to create a perceived data quality for each source. This paper demonstrates a straight-forward and novel technique that can be applied to any gradient descent optimiser: Update model weights as a function of the perceived reliability of data sources within a wider data set. The algorithm controls the plasticity of a given model to weight updates based on the history of losses from individual data sources. We show that applying this technique can significantly improve model performance when trained on a mixture of reliable and unreliable data sources, and maintain performance when models are trained on data sources that are all considered reliable. All code to reproduce this work's experiments and implement the algorithm in the reader's own models is made available.
translated by 谷歌翻译
We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property $\phi$ is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of $\phi$. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity.
translated by 谷歌翻译
5G及以后的移动网络将以前所未有的规模支持异质用例,从而要求自动控制和优化针对单个用户需求的网络功能。当前的蜂窝体系结构不可能对无线电访问网络(RAN)进行这种细粒度控制。为了填补这一空白,开放式运行范式及其规范引入了一个带有抽象的开放体系结构,该架构可以启用闭环控制并提供数据驱动和智能优化RAN在用户级别上。这是通过在网络边缘部署在近实时RAN智能控制器(接近RT RIC)上的自定义RAN控制应用程序(即XAPP)获得的。尽管有这些前提,但截至今天,研究界缺乏用于构建数据驱动XAPP的沙箱,并创建大型数据集以有效的AI培训。在本文中,我们通过引入NS-O-RAN来解决此问题,NS-O-RAN是一个软件框架,该框架将现实世界中的生产级近距离RIC与NS-3上的基于3GPP的模拟环境集成在一起,从而实现了XAPPS和XAPPS的开发自动化的大规模数据收集和深入强化学习驱动的控制策略的测试,以在用户级别的优化中进行优化。此外,我们提出了第一个特定于用户的O-RAN交通转向(TS)智能移交框架。它使用随机的合奏混合物,结合了最先进的卷积神经网络体系结构,以最佳地为网络中的每个用户分配服务基站。我们的TS XAPP接受了NS-O-RAN收集的超过4000万个数据点的培训,该数据点在近距离RIC上运行,并控制其基站。我们在大规模部署中评估了性能,这表明基于XAPP的交换可以使吞吐量和频谱效率平均比传统的移交启发式方法提高50%,而动机性开销较少。
translated by 谷歌翻译