We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to scale the Multi-digit MNISTAdd benchmark to sums of 15 MNIST digits, up from 4 in competing systems. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
translated by 谷歌翻译
由于一系列理想的模型属性,卷积神经网络(CNN)的使用在深度学习中被广泛扩展,这导致了有效有效的机器学习框架。但是,必须将CNN架构定制为特定任务,以结合输入长度,分辨率和尺寸的考虑因素。在这项工作中,我们通过连续的卷积神经网络(CCNN)克服了针对特定问题的CNN体​​系结构的需求:一个配备了连续卷积内核的单个CNN体系结构,可用于根据任意分辨率,维度,长度和长度的数据进行任务,而无需结构性长度变化。连续的卷积内核在每一层的远距离依赖性模型,并消除当前CNN体系结构中所需的降采样层和任务依赖性深度的需求。我们通过将相同的CCNN应用于顺序(1 $ \ mathrm {d} $)和视觉数据(2 $ \ mathrm {d} $)上的一系列任务来显示我们方法的普遍性。我们的CCNN竞争性能,并且在所有考虑的所有任务中通常都优于当前最新的。
translated by 谷歌翻译
同时发展机器人的形态(体)和控制器(大脑)可能导致后代遗传体和大脑之间的不匹配。为了缓解这个问题,相对较早地提出了通过所谓的生活框架的所谓的生命框架的学习期。但是,实证评估仍缺乏迄今为止。在本文中,我们研究了这种学习机制与不同视角的影响。使用广泛的模拟,我们认为,与纯粹的进化方法相比,学习可以大大提高任务性能并减少一定适合水平所需的几代人数。此外,虽然学习只直接影响控制器,但我们证明了进化的形态也将是不同的。这提供了定量演示,即大脑的变化可以诱导体内的变化。最后,我们研究了给定体学习的能力量化的形态智力的概念。我们观察到学习三角洲,继承与学习大脑之间的性能差异,在整个进化过程中都在增长。这表明演化正在生产具有越来越多的可塑性的机器人,即连续几代变得越来越好,更好的学习者,这反过来使它们更好,在给定的任务中更好地更好。总而言之,我们的结果表明,生活的三角形不仅是理论兴趣的概念,而且是一种具有实际好处的系统架构。
translated by 谷歌翻译
变异自动编码器(VAE)是最常用的无监督机器学习模型之一。但是,尽管对先前和后验的高斯分布的默认选择通常代表了数学方便的分布通常会导致竞争结果,但我们表明该参数化无法用潜在的超球体结构对数据进行建模。为了解决这个问题,我们建议使用von Mises-fisher(VMF)分布,从而导致超级潜在空间。通过一系列实验,我们展示了这种超球vae或$ \ mathcal {s} $ - vae如何更适合于用超球形结构捕获数据,同时胜过正常的,$ \ mathcal {n} $ - vae-,在其他数据类型的低维度中。http://github.com/nicola-decao/s-vae-tf和https://github.com/nicola-decao/nicola-decao/s-vae-pytorch
translated by 谷歌翻译
Many different methods to train deep generative models have been introduced in the past. In this paper, we propose to extend the variational auto-encoder (VAE) framework with a new type of prior which we call "Variational Mixture of Posteriors" prior, or VampPrior for short. The VampPrior consists of a mixture distribution (e.g., a mixture of Gaussians) with components given by variational posteriors conditioned on learnable pseudo-inputs. We further extend this prior to a two layer hierarchical model and show that this architecture with a coupled prior and posterior, learns significantly better models. The model also avoids the usual local optima issues related to useless latent dimensions that plague VAEs. We provide empirical studies on six datasets, namely, static and binary MNIST, OMNIGLOT, Caltech 101 Silhouettes, Frey Faces and Histopathology patches, and show that applying the hierarchical VampPrior delivers state-of-the-art results on all datasets in the unsupervised permutation invariant setting and the best results or comparable to SOTA methods for the approach with convolutional networks.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
组织病理学仍然是各种癌症诊断的黄金标准。计算机视觉的最新进展,特别是深度学习,促进了针对各种任务的组织病理学图像的分析,包括免疫细胞检测和微卫星不稳定性分类。每个任务的最新工作通常采用鉴定的基础体系结构,这些体系结构已鉴定为图像分类。开发组织病理学分类器的标准方法倾向于将重点放在优化单个任务的模型上,而不是考虑建模创新的各个方面,从而改善了跨任务的概括。在这里,我们提出了Champkit(模型预测工具包的全面组织病理学评估):可扩展的,完全可重现的基准测试工具包,由大量的斑点级图像分类任务组成,跨不同的癌症。 Champkit能够系统地记录模型和方法中提议改进的性能影响的一种方法。 Champkit源代码和数据可在https://github.com/kaczmarj/champkit上自由访问。
translated by 谷歌翻译
在许多游戏中,动作包括玩家制作的若干决定。这些决定可以被视为单独的动作,这在效率原因的多动作游戏中已经是一个常见的做法。播放器的这种划分进入一系列更简单/较低级别的移动,称为\ emph {拆分}。到目前为止,分裂移动已仅在顾问的直接案件中应用,此外,几乎没有研究揭示其对代理商的影响力量的影响。采取知识的视角,我们的目标是回答如何在Monte-Carlo树搜索(MCT)中有效地使用分裂移动,以及分裂设计对代理的实际影响是什么。本文提出了与任意分裂的动作有用的MCT的概括。我们设计了算法的几种变体,并尝试分别测量分离移动的影响,以分别对效率,MCT,模拟和基于动作的启发式的效率。测试是在一组棋盘游戏上进行,并使用常规的主台综合游戏进行播放形式主义进行,其中可以基于游戏的抽象描述自动派生不同粒度的分裂策略。结果以不同方式使用分流设计的代理行为概述。我们得出结论,拆分设计可能对单一以及多动作游戏有很大的利益。
translated by 谷歌翻译
域适应对于将学习模型调整到新方案,例如域移位或更改数据分布,这是至关重要的。目前的方法通常需要来自移位域的大量标记或未标记的数据。这可以是在需要连续动态适应或遭受数据稀缺的领域的障碍,例如,自动驾驶在挑战天气条件下。为了解决持续适应分配班的问题,我们提出了动态无监督的适应(DUA)。我们通过持续调整批量归一化层的统计来修改模型的特征表示。我们表明,通过从移位域中仅访问一小部分未标记的数据并按顺序调整,可以实现强大的性能增益。甚至从目标领域的未标记数据的少于1%,Dua已经实现了强大的基线的竞争结果。此外,与先前的方法相比,计算开销最小。我们的方法很简单,但有效,可以应用于任何使用批量归一化作为其组件之一的架构。我们通过在各种域适应数据集和任务中评估DUA的效用,包括对象识别,数字识别和对象检测。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译