Reinforcement learning-based (RL-based) energy management strategy (EMS) is considered a promising solution for the energy management of electric vehicles with multiple power sources. It has been shown to outperform conventional methods in energy management problems regarding energy-saving and real-time performance. However, previous studies have not systematically examined the essential elements of RL-based EMS. This paper presents an empirical analysis of RL-based EMS in a Plug-in Hybrid Electric Vehicle (PHEV) and Fuel Cell Electric Vehicle (FCEV). The empirical analysis is developed in four aspects: algorithm, perception and decision granularity, hyperparameters, and reward function. The results show that the Off-policy algorithm effectively develops a more fuel-efficient solution within the complete driving cycle compared with other algorithms. Improving the perception and decision granularity does not produce a more desirable energy-saving solution but better balances battery power and fuel consumption. The equivalent energy optimization objective based on the instantaneous state of charge (SOC) variation is parameter sensitive and can help RL-EMSs to achieve more efficient energy-cost strategies.
translated by 谷歌翻译
Online media data, in the forms of images and videos, are becoming mainstream communication channels. However, recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost, which not only poses a serious threat to the trustworthiness of digital information but also has severe societal implications. This motivates a growing interest of research in media tampering detection, i.e., using deep learning techniques to examine whether media data have been maliciously manipulated. Depending on the content of the targeted images, media forgery could be divided into image tampering and Deepfake techniques. The former typically moves or erases the visual elements in ordinary images, while the latter manipulates the expressions and even the identity of human faces. Accordingly, the means of defense include image tampering detection and Deepfake detection, which share a wide variety of properties. In this paper, we provide a comprehensive review of the current media tampering detection approaches, and discuss the challenges and trends in this field for future research.
translated by 谷歌翻译
Deep transfer learning has been widely used for knowledge transmission in recent years. The standard approach of pre-training and subsequently fine-tuning, or linear probing, has shown itself to be effective in many down-stream tasks. Therefore, a challenging and ongoing question arises: how to quantify cross-task transferability that is compatible with transferred results while keeping self-consistency? Existing transferability metrics are estimated on the particular model by conversing source and target tasks. They must be recalculated with all existing source tasks whenever a novel unknown target task is encountered, which is extremely computationally expensive. In this work, we highlight what properties should be satisfied and evaluate existing metrics in light of these characteristics. Building upon this, we propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks. Specifically, we use a restart scheme to calculate every batch gradient over each weight unit more than once, and then we take the average of all the gradients to get the expectation. Thus, the transferability between the source and target task is estimated by computing the distance of normalized principal gradients. Extensive experiments show that the proposed transferability metric is more stable, reliable and efficient than SOTA methods.
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
受益于大规模预处理的视觉语言模型(VL-PMS),视觉问答的性能(VQA)已开始接近人类的甲骨文表现。但是,对VQA数据有限的大规模VL-PM的固定通常面临过度拟合和泛化问题,从而导致缺乏健壮性。在本文中,我们旨在提高VQA系统的鲁棒性(即,当系统对VQA的VL-PMS进行验证时,从信息瓶颈的角度来看,系统能够防御投入变化和人类对抗攻击的能力)。通常,通过VL-PMS获得的内部表示不可避免地包含有关下游VQA任务的无关和冗余信息,从而导致统计上的虚假相关性和对输入变化的不敏感性。为了鼓励表示形式收敛到视觉学习中的足够统计量,我们提出了相关信息瓶颈(CIB)原则,该原则通过最大程度地减少投入和内部表示之间的相互信息(MI)来寻求表示压缩和冗余之间的权衡。同时最大化输出和表示之间的MI。同时,CIB通过对称的关节MI估计来测量视觉和语言输入和表示之间的内部相关性。对五个VQA的投入鲁棒性和两个VQA基准的大量实验证明了拟议CIB在改善VQA系统鲁棒性方面的有效性和优越性。
translated by 谷歌翻译
多源机电耦合使燃料电池电动汽车(FCEV)的能源管理相对非线性和复杂,尤其是在4轮驱动(4WD)FCEV的类型中。复杂的非线性系统的准确观察状态是FCEV中出色的能源管理的基础。为了释放FCEV的节能潜力,为4WD FCEV提出了一种基于学习的新型鲁棒模型预测控制(LRMPC)策略,从而有助于多个能源之间的合适功率分布。基于机器学习(ML)的精心设计的策略将非线性系统的知识转化为具有出色稳健性能的显式控制方案。首先,具有高回归准确性和出色概括能力的ML方法是离线训练的,以建立SOC的精确状态观察者。然后,使用国家观察者生成的SOC的显式数据表用于抓住准确的状态更改,其输入功能包括车辆状态和车辆组件状态。具体来说,提供未来速度参考的车辆速度估计是由深森林构建的。接下来,将包括显式数据表和车辆速度估计的组件与模型预测控制(MPC)结合使用,以释放FCEV中多释放系统的最新能源节能能力,其名称是LRMPC。最后,在模拟测试中进行详细评估以验证LRMPC的进步性能。相应的结果突出了LRMPC的最佳控制效应和强大的实时应用能力。
translated by 谷歌翻译
尽管利用对抗性示例的可传递性可以达到非目标攻击的攻击成功率,但它在有针对性的攻击中不能很好地工作,因为从源图像到目标类别的梯度方向通常在不同的DNN中有所不同。为了提高目标攻击的可转移性,最近的研究使生成的对抗示例的特征与从辅助网络或生成对抗网络中学到的目标类别的特征分布保持一致。但是,这些作品假定培训数据集可用,并且需要大量时间来培训网络,这使得很难应用于现实世界。在本文中,我们从普遍性的角度重新审视具有针对性转移性的对抗性示例,并发现高度普遍的对抗扰动往往更容易转移。基于此观察结果,我们提出了图像(LI)攻击的局部性,以提高目标传递性。具体而言,Li不仅仅是使用分类损失,而是引入了对抗性扰动的原始图像和随机裁剪的图像之间的特征相似性损失,这使得对抗性扰动的特征比良性图像更为主导,因此提高了目标传递性的性能。通过将图像的局部性纳入优化扰动中,LI攻击强调,有针对性的扰动应与多样化的输入模式,甚至本地图像贴片有关。广泛的实验表明,LI可以实现基于转移的目标攻击的高成功率。在攻击Imagenet兼容数据集时,LI与现有最新方法相比,LI的提高为12 \%。
translated by 谷歌翻译
融合激光雷达和相机信息对于在自动驾驶系统中实现准确可靠的3D对象检测至关重要。但是,由于难以结合两个截然不同的方式的多晶格几何和语义特征,因此这是具有挑战性的。最近的方法旨在通过2D摄像机图像中的提升点(称为种子)中的3D空间来探索相机功能的语义密度,并且可以将它们大致分为1)1)原始点的早期融合,旨在增强3D在早期输入阶段的点云,以及2)Bev(鸟眼视图)的后期融合,在检测头之前合并了LiDar和Camera BEV功能。尽管两者在增强联合特征的表示能力方面都具有优点,但这种单级融合策略是对上述挑战的次优点。他们的主要缺点是无法充分从两种不同的方式中相互作用的多晶格语义特征。为此,我们提出了一个新颖的框架,该框架着重于多粒性激光雷达和相机功能的多尺度渐进互动。我们提出的方法缩写为MDMSFusion,实现最先进的方法可导致3D对象检测,在Nuscenes验证集上具有69.1 MAP和71.8 NDS,在NUSCENES测试集上进行了70.8 MAP和73.2 nds,该级别的第一和第二级和第二个NDS。在提交时,在单模型的非集结方法中。
translated by 谷歌翻译
病理学家需要结合不同染色病理切片的信息,以获得准确的诊断结果。可变形图像配准是融合多模式病理切片的必要技术。本文提出了一个基于混合特征的基于特征的可变形图像登记框架,用于染色的病理样品。我们首先提取密集的特征点,并通过两个深度学习功能网络执行匹配点。然后,为了进一步减少虚假匹配,提出了一种结合隔离森林统计模型和局部仿射校正模型的异常检测方法。最后,插值方法基于上述匹配点生成用于病理图像注册的DVF。我们在非刚性组织学图像注册(ANHIR)挑战的数据集上评估了我们的方法,该挑战与IEEE ISBI 2019会议共同组织。我们的技术的表现使传统方法的平均水平注册目标误差(RTRE)达到0.0034。所提出的方法实现了最先进的性能,并在评估测试数据集时将其排名1。提出的基于特征的混合特征的注册方法可能会成为病理图像注册的可靠方法。
translated by 谷歌翻译