小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
Text-to-text generation models have increasingly become the go-to solution for a wide variety of sequence labeling tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-$k$ predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model.
translated by 谷歌翻译
This paper introduces a novel method of adding intrinsic bonuses to task-oriented reward function in order to efficiently facilitate reinforcement learning search. While various bonuses have been designed to date, they are analogous to the depth-first and breadth-first search algorithms in graph theory. This paper, therefore, first designs two bonuses for each of them. Then, a heuristic gain scheduling is applied to the designed bonuses, inspired by the iterative deepening search, which is known to inherit the advantages of the two search algorithms. The proposed method is expected to allow agent to efficiently reach the best solution in deeper states by gradually exploring unknown states. In three locomotion tasks with dense rewards and three simple tasks with sparse rewards, it is shown that the two types of bonuses contribute to the performance improvement of the different tasks complementarily. In addition, by combining them with the proposed gain scheduling, all tasks can be accomplished with high performance.
translated by 谷歌翻译
Automated driving technology has gained a lot of momentum in the last few years. For the exploration field, navigation is the important key for autonomous operation. In difficult scenarios such as snowy environment, the road is covered with snow and road detection is impossible in this situation using only basic techniques. This paper introduces detection of snowy road in forest environment using RGB camera. The method combines noise filtering technique with morphological operation to classify the image component. By using the assumption that all road is covered by snow and the snow part is defined as road area. From the perspective image of road, the vanishing point of road is one of factor to scope the region of road. This vanishing point is found with fitting triangle technique. The performance of algorithm is evaluated by two error value: False Negative Rate and False Positive Rate. The error shows that the method has high efficiency for detect road with straight road but low performance for curved road. This road region will be applied with depth information from camera to detect for obstacle in the future work.
translated by 谷歌翻译
Spatio-temporal modeling as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the underlying heterogeneity and non-stationarity implied in the graph streams, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a large-scale spatio-temporal dataset that contains a variaty of non-stationary phenomena. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle locations and time slots with different patterns and be robustly adaptive to different anomalous situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
Sampling-based model predictive control (MPC) can be applied to versatile robotic systems. However, the real-time control with it is a big challenge due to its unstable updates and poor convergence. This paper tackles this challenge with a novel derivation from reverse Kullback-Leibler divergence, which has a mode-seeking behavior and is likely to find one of the sub-optimal solutions early. With this derivation, a weighted maximum likelihood estimation with positive/negative weights is obtained, solving by mirror descent (MD) algorithm. While the negative weights eliminate unnecessary actions, that requires to develop a practical implementation that avoids the interference with positive/negative updates based on rejection sampling. In addition, although the convergence of MD can be accelerated with Nesterov's acceleration method, it is modified for the proposed MPC with a heuristic of a step size adaptive to the noise estimated in update amounts. In the real-time simulations, the proposed method can solve more tasks statistically than the conventional method and accomplish more complex tasks only with a CPU due to the improved acceleration. In addition, its applicability is also demonstrated in a variable impedance control of a force-driven mobile robot. https://youtu.be/D8bFMzct1XM
translated by 谷歌翻译
Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset in which traffic incident information is contained. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
顺序标记是一项基本的NLP任务,构成了许多应用程序的骨干。对SEQ2SEQ模型的监督学习(如T5)在这些问题上取得了巨大的成功。但是,这些模型的培训目标与我们在实际应用中关心的指标和Desiderata之间存在显着脱节。例如,实用的序列标记应用程序可能需要优化某些Precision-Recall折衷(TOP-K预测),这与最大化金标记序列的可能性的标准目标完全不同。因此,为了弥合这一差距,我们提出了Groot,这是一个简单而有效的框架,用于生成文本序列的奖励优化。 Groot通过训练生成的顺序标记模型来工作,以将解码器输出分布与(Black-Box)奖励函数的输出分布相匹配。使用迭代培训制度,我们首先生成预测候选者,然后纠正其中的错误,最后对比这些候选者(基于其奖励价值)。正如通过四个公共基准测试的广泛实验所证明的那样,Groot显着改善了所有奖励指标。此外,Groot还导致了整体解码器分布的改善,这是由顶级$ K $候选者的质量提高所证明的。
translated by 谷歌翻译
本文探讨了时间视频接地(TVG)的任务,在该任务中,给定未修剪的视频和查询句子,目标是在提供的自然语言查询描述的视频中识别和确定动作实例的时间界。最近的作品通过使用大型预训练的语言模型(PLM)直接编码查询来解决此任务。但是,很难隔离改进的语言表示的影响,因为这些作品还提出了视觉输入的改进。此外,这些PLM大大增加了训练TVG模型的计算成本。因此,本文研究了PLM在TVG任务中的影响,并根据适配器评估了NLP参数效率培训替代方案的适用性。我们将流行的PLM与选择现有方法和测试不同的适配器相结合,以减少其他参数的影响。我们在三个具有挑战性的数据集上的结果表明,当TVG模型对该任务进行微调时,可以从PLM中受益匪浅,并且适配器是完全微调的有效替代方法,即使它们并不适合我们的任务。具体而言,适配器有助于节省计算成本,从而使PLM集成在较大的TVG模型中,并提供与最先进模型相当的结果。最后,通过对TVG中不同类型的适配器进行基准测试,我们的结果阐明了哪种适配器最适合每个研究的情况。
translated by 谷歌翻译
有一段漫长的历史,努力与我们周围的实体和空间探索音乐元素,例如Musique Concr \'Ete和Ambient Music。在计算机音乐和数字艺术的背景下,还设计了集中在周围物体和物理空间上的互动体验。近年来,随着设备的开发和普及,在扩展现实中设计了越来越多的作品,以创造这种音乐体验。在本文中,我们描述了MR4MR,这是一项声音安装工作,使用户可以在混合现实的背景下体验与周围空间相互作用产生的旋律(MR)。用户使用HoloLens,用户可以撞击周围环境中真实对象的虚拟对象。然后,通过遵循物体发出的声音并使用音乐生成机器学习模型进行随机变化并逐渐改变旋律的声音,用户可以感觉到其环境旋律“转世”。
translated by 谷歌翻译