The tradeoff between performance and inference speed is critical for practical applications. Architecture reparameterization obtains better tradeoffs and it is becoming an increasingly popular ingredient in modern convolutional neural networks. Nonetheless, its quantization performance is usually too poor to deploy (e.g. more than 20% top-1 accuracy drop on ImageNet) when INT8 inference is desired. In this paper, we dive into the underlying mechanism of this failure, where the original design inevitably enlarges quantization error. We propose a simple, robust, and effective remedy to have a quantization-friendly structure that also enjoys reparameterization benefits. Our method greatly bridges the gap between INT8 and FP32 accuracy for RepVGG. Without bells and whistles, the top-1 accuracy drop on ImageNet is reduced within 2\% by standard post-training quantization.
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
多源机电耦合使燃料电池电动汽车(FCEV)的能源管理相对非线性和复杂,尤其是在4轮驱动(4WD)FCEV的类型中。复杂的非线性系统的准确观察状态是FCEV中出色的能源管理的基础。为了释放FCEV的节能潜力,为4WD FCEV提出了一种基于学习的新型鲁棒模型预测控制(LRMPC)策略,从而有助于多个能源之间的合适功率分布。基于机器学习(ML)的精心设计的策略将非线性系统的知识转化为具有出色稳健性能的显式控制方案。首先,具有高回归准确性和出色概括能力的ML方法是离线训练的,以建立SOC的精确状态观察者。然后,使用国家观察者生成的SOC的显式数据表用于抓住准确的状态更改,其输入功能包括车辆状态和车辆组件状态。具体来说,提供未来速度参考的车辆速度估计是由深森林构建的。接下来,将包括显式数据表和车辆速度估计的组件与模型预测控制(MPC)结合使用,以释放FCEV中多释放系统的最新能源节能能力,其名称是LRMPC。最后,在模拟测试中进行详细评估以验证LRMPC的进步性能。相应的结果突出了LRMPC的最佳控制效应和强大的实时应用能力。
translated by 谷歌翻译
准确的交通状况预测为车辆环境协调和交通管制任务提供了坚实的基础。由于道路网络数据在空间分布中的复杂性以及深度学习方法的多样性,有效定义流量数据并充分捕获数据中复杂的空间非线性特征变得具有挑战性。本文将两种分层图池方法应用于流量预测任务,以减少图形信息冗余。首先,本文验证了流量预测任务中层次图池方法的有效性。分层图合并方法与其他基线在预测性能上形成鲜明对比。其次,应用了两种主流分层图池方法,节点群集池和节点下降池,用于分析流量预测中的优势和弱点。最后,对于上述图神经网络,本文比较了不同图网络输入对流量预测准确性的预测效应。分析和汇总定义图网络的有效方法。
translated by 谷歌翻译
近年来,在运输电气化方面取得了重大进展。作为主要的储能设备,锂离子电池(LIB)已受到广泛关注。准确地预测健康状况(SOH)不仅可以缓解用户对电池寿命的焦虑,而且还可以为电池管理提供重要信息。本文提出了一种基于视觉变压器(VIT)模型的SOH的预测方法。首先,预定义电压范围的离散充电数据用作输入数据矩阵。然后,电池的循环特征是由VIT捕获的,可以获得可以获得全局特征,并且通过将循环特征与完整连接(FC)层相结合来获得SOH。同时,引入了转移学习(TL),并根据目标任务电池的早期周期数据进一步微调基于源任务电池训练的预测模型,以提供准确的预测。实验表明,与现有的深度学习方法相比,我们的方法可以获得更好的特征表达,从而可以实现更好的预测效果和传递效果。
translated by 谷歌翻译
多年来,Yolo系列一直是有效对象检测的事实上的行业级别标准。尤洛社区(Yolo Community)绝大多数繁荣,以丰富其在众多硬件平台和丰富场景中的使用。在这份技术报告中,我们努力将其限制推向新的水平,以坚定不移的行业应用心态前进。考虑到对真实环境中速度和准确性的多种要求,我们广泛研究了行业或学术界的最新对象检测进步。具体而言,我们从最近的网络设计,培训策略,测试技术,量化和优化方法中大量吸收了思想。最重要的是,我们整合了思想和实践,以在各种规模上建立一套可供部署的网络,以适应多元化的用例。在Yolo作者的慷慨许可下,我们将其命名为Yolov6。我们还向用户和贡献者表示热烈欢迎,以进一步增强。为了了解性能,我们的Yolov6-N在NVIDIA TESLA T4 GPU上以1234 fps的吞吐量在可可数据集上击中35.9%的AP。 Yolov6-S在495 fps处的43.5%AP罢工,在相同规模〜(Yolov5-S,Yolox-S和Ppyoloe-S)上超过其他主流探测器。我们的量化版本的Yolov6-S甚至在869 fps中带来了新的43.3%AP。此外,与其他推理速度相似的检测器相比,Yolov6-m/L的精度性能(即49.5%/52.3%)更好。我们仔细进行了实验以验证每个组件的有效性。我们的代码可在https://github.com/meituan/yolov6上提供。
translated by 谷歌翻译
快速移动受试者的运动模糊是摄影中的一个长期问题,由于收集效率有限,尤其是在弱光条件下,在手机上非常常见。尽管近年来我们目睹了图像脱毛的巨大进展,但大多数方法都需要显着的计算能力,并且在处理高分辨率照片的情况下具有严重的局部动作。为此,我们根据手机的双摄像头融合技术开发了一种新颖的面部脱毛系统。该系统检测到主题运动以动态启用参考摄像头,例如,最近在高级手机上通常可用的Ultrawide Angle摄像机,并捕获带有更快快门设置的辅助照片。虽然主镜头是低噪音但模糊的,但参考镜头却很锋利,但嘈杂。我们学习ML模型,以对齐和融合这两张镜头,并在没有运动模糊的情况下输出清晰的照片。我们的算法在Google Pixel 6上有效运行,每次拍摄需要463毫秒的开销。我们的实验证明了系统对替代单片,多帧,面部特异性和视频脱张算法以及商业产品的优势和鲁棒性。据我们所知,我们的工作是第一个用于面部运动脱毛的移动解决方案,在各种运动和照明条件下,在数千个图像中可靠地工作。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译