滚动轴承是旋转机械的最关键组成部分。及时识别有缺陷的轴承可能会阻止整个机械系统的故障。由于机器零件的快速发展,机械状况监测场已进入大数据阶段。当使用大量数据时,手动特征提取方法的缺点是效率低下和不准确。近年来,诸如深度学习方法之类的数据驱动方法已成功用于机械智能故障检测。卷积神经网络(CNN)主要用于早期研究中,以检测和识别轴承断层。但是,CNN模型遭受了难以管理故障时间信息的缺点,这导致缺乏分类结果。在这项研究中,使用最先进的视觉变压器(VIT)对轴承缺陷进行了分类。使用Case Western Reserve University(CWRU)实验室实验数据对轴承缺陷进行了分类。该研究还考虑了除正常轴承条件外,在0负载情况下的13种不同类型的缺陷。使用短时傅立叶变换(STFT),将振动信号转换为2D时频图像。 2D时频图像用作VIT的输入参数。该模型的总体准确度为98.8%。
translated by 谷歌翻译
从示范中学习(LFD)提供了一种方便的手段,可以在机器人固有坐标中获得示范时为机器人提供灵巧的技能。但是,长期和复杂技能中复杂错误的问题减少了其广泛的部署。由于大多数此类复杂的技能由组合的较小运动组成,因此将目标技能作为一系列紧凑的运动原语似乎是合理的。在这里,需要解决的问题是确保电动机以允许成功执行后续原始的状态结束。在这项研究中,我们通过提议学习明确的校正政策来关注这个问题,当时未达到原始人之间的预期过渡状态。校正策略本身是通过使用最先进的运动原始学习结构,条件神经运动原语(CNMP)来学习的。然后,学识渊博的校正政策能够以背景方式产生各种运动轨迹。拟议系统比学习完整任务的优点在模拟中显示了一个台式设置,其中必须以两个步骤将对象通过走廊推动。然后,通过为上身类人生物机器人配备具有在3D空间中的条上打结的技巧,显示了所提出的方法在现实世界中进行双重打结的适用性。实验表明,即使面对校正案例不属于人类示范集的一部分,机器人也可以执行成功的打结。
translated by 谷歌翻译
预计到2023年,物联网设备的数量将达到1,250亿。物联网设备的增长将加剧设备之间的碰撞,从而降低通信性能。选择适当的传输参数,例如通道和扩展因子(SF),可以有效地减少远程(LORA)设备之间的碰撞。但是,当前文献中提出的大多数方案在具有有限的计算复杂性和内存的物联网设备上都不容易实现。为了解决此问题,我们提出了一种轻巧的传输参数选择方案,即使用用于低功率大区域网络(Lorawan)的增强学习的联合通道和SF选择方案。在拟议的方案中,可以仅使用确认(ACK)信息来选择适当的传输参数。此外,我们从理论上分析了我们提出的方案的计算复杂性和记忆要求,该方案验证了我们所提出的方案可以选择具有极低计算复杂性和内存要求的传输参数。此外,在现实世界中的洛拉设备上实施了大量实验,以评估我们提出的计划的有效性。实验结果证明了以下主要现象。 (1)与其他轻型传输参数选择方案相比,我们在Lorawan中提出的方案可以有效避免Lora设备之间的碰撞,而与可用通道的变化无关。 (2)可以通过选择访问通道和使用SFS而不是仅选择访问渠道来提高帧成功率(FSR)。 (3)由于相邻通道之间存在干扰,因此可以通过增加相邻可用通道的间隔来改善FSR和公平性。
translated by 谷歌翻译
深度度量学习(DML)了解映射,该映射到嵌入空间,其中类似数据接近并且不同的数据远远。然而,DML的传统基于代理的损失有两个问题:渐变问题并使用多个本地中心应用现实世界数据集。此外,DML性能指标也有一些问题具有稳定性和灵活性。本文提出了多代理锚(MPA)丢失和归一化折扣累积增益(NDCG @ K)度量。本研究贡献了三个以下:(1)MPA损失能够使用多代理学习现实世界数据集。(2)MPA损失提高了神经网络的培训能力,解决了梯度问题。(3)NDCG @ K度量标准鼓励对各种数据集进行全面评估。最后,我们展示了MPA损失的有效性,MPA损失在两个用于细粒度图像的数据集上实现了最高准确性。
translated by 谷歌翻译