深度学习体系结构的令人印象深刻的性能与模型复杂性的大量增加有关。需要对数百万个参数进行调整,并相应地进行训练和推理时间扩展。但是需要进行大规模的微调吗?在本文中,专注于图像分类,我们考虑了一种简单的转移学习方法利用预卷积特征作为快速内核方法的输入。我们将这种方法称为最佳调整,因为只有内核分类器经过培训。通过执行2500多个培训过程,我们表明这种最佳调整方法提供了可比的精度W.R.T.进行微调,训练时间较小在一个和两个数量级之间。这些结果表明,顶级调整为中小型数据集中的微调提供了有用的替代方法,尤其是在训练效率至关重要的情况下。
translated by 谷歌翻译
监测原位浮游生物的种群对于保留水生生态系统至关重要。浮游生物微生物实际上易受较小的环境扰动的影响,可以反映出随之而来的形态学和动力学修饰。如今,高级自动或半自动采集系统的可用性已允许生产越来越多的浮游生物图像数据。由于大量获得的数据和浮游生物的数字,因此,采用机器学习算法来对此类数据进行分类。为了应对这些挑战,我们提出了有效的无监督学习管道,以提供浮游生物微生物的准确分类。我们构建一组图像描述符,利用两步过程。首先,对预先训练的神经网络提取的功能进行了跨自动编码器(VAE)的培训。然后,我们将学习的潜在空间用作聚类的图像描述符。我们将方法与最新的无监督方法进行了比较,其中一组预定义的手工特征用于浮游生物图像的聚类。所提出的管道优于我们分析中包含的所有浮游生物数据集的基准算法,提供了更好的图像嵌入属性。
translated by 谷歌翻译
We are witnessing a widespread adoption of artificial intelligence in healthcare. However, most of the advancements in deep learning (DL) in this area consider only unimodal data, neglecting other modalities. Their multimodal interpretation necessary for supporting diagnosis, prognosis and treatment decisions. In this work we present a deep architecture, explainable by design, which jointly learns modality reconstructions and sample classifications using tabular and imaging data. The explanation of the decision taken is computed by applying a latent shift that, simulates a counterfactual prediction revealing the features of each modality that contribute the most to the decision and a quantitative score indicating the modality importance. We validate our approach in the context of COVID-19 pandemic using the AIforCOVID dataset, which contains multimodal data for the early identification of patients at risk of severe outcome. The results show that the proposed method provides meaningful explanations without degrading the classification performance.
translated by 谷歌翻译
Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.
translated by 谷歌翻译
Testing Deep Learning (DL) based systems inherently requires large and representative test sets to evaluate whether DL systems generalise beyond their training datasets. Diverse Test Input Generators (TIGs) have been proposed to produce artificial inputs that expose issues of the DL systems by triggering misbehaviours. Unfortunately, such generated inputs may be invalid, i.e., not recognisable as part of the input domain, thus providing an unreliable quality assessment. Automated validators can ease the burden of manually checking the validity of inputs for human testers, although input validity is a concept difficult to formalise and, thus, automate. In this paper, we investigate to what extent TIGs can generate valid inputs, according to both automated and human validators. We conduct a large empirical study, involving 2 different automated validators, 220 human assessors, 5 different TIGs and 3 classification tasks. Our results show that 84% artificially generated inputs are valid, according to automated validators, but their expected label is not always preserved. Automated validators reach a good consensus with humans (78% accuracy), but still have limitations when dealing with feature-rich datasets.
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
Deep Neural Networks (DNN) are increasingly used as components of larger software systems that need to process complex data, such as images, written texts, audio/video signals. DNN predictions cannot be assumed to be always correct for several reasons, among which the huge input space that is dealt with, the ambiguity of some inputs data, as well as the intrinsic properties of learning algorithms, which can provide only statistical warranties. Hence, developers have to cope with some residual error probability. An architectural pattern commonly adopted to manage failure-prone components is the supervisor, an additional component that can estimate the reliability of the predictions made by untrusted (e.g., DNN) components and can activate an automated healing procedure when these are likely to fail, ensuring that the Deep Learning based System (DLS) does not cause damages, despite its main functionality being suspended. In this paper, we consider DLS that implement a supervisor by means of uncertainty estimation. After overviewing the main approaches to uncertainty estimation and discussing their pros and cons, we motivate the need for a specific empirical assessment method that can deal with the experimental setting in which supervisors are used, where the accuracy of the DNN matters only as long as the supervisor lets the DLS continue to operate. Then we present a large empirical study conducted to compare the alternative approaches to uncertainty estimation. We distilled a set of guidelines for developers that are useful to incorporate a supervisor based on uncertainty monitoring into a DLS.
translated by 谷歌翻译
Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
translated by 谷歌翻译
A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplasticity, brain disorders, or brain networks. However, it is a well-known issue that a large portion of tractogram fibers is not anatomically plausible and can be considered artifacts of the tracking procedure. With Verifyber, we tackle the problem of filtering out such non-plausible fibers using a novel fully-supervised learning approach. Differently from other approaches based on signal reconstruction and/or brain topology regularization, we guide our method with the existing anatomical knowledge of the white matter. Using tractograms annotated according to anatomical principles, we train our model, Verifyber, to classify fibers as either anatomically plausible or non-plausible. The proposed Verifyber model is an original Geometric Deep Learning method that can deal with variable size fibers, while being invariant to fiber orientation. Our model considers each fiber as a graph of points, and by learning features of the edges between consecutive points via the proposed sequence Edge Convolution, it can capture the underlying anatomical properties. The output filtering results highly accurate and robust across an extensive set of experiments, and fast; with a 12GB GPU, filtering a tractogram of 1M fibers requires less than a minute. Verifyber implementation and trained models are available at https://github.com/FBK-NILab/verifyber.
translated by 谷歌翻译
As aerial robots are tasked to navigate environments of increased complexity, embedding collision tolerance in their design becomes important. In this survey we review the current state-of-the-art within the niche field of collision-tolerant micro aerial vehicles and present different design approaches identified in the literature, as well as methods that have focused on autonomy functionalities that exploit collision resilience. Subsequently, we discuss the relevance to biological systems and provide our view on key directions of future fruitful research.
translated by 谷歌翻译