在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
分列已被利用作为用于最小化能量消耗的车辆方法。在本文中,我们提出了一个限制驱动的最佳控制框架,从而产生了在开放式运输系统中运行的连接和自动车辆的紧急排行行为。我们的方法将最近的洞察于约束驱动的最佳控制与高速公路设置中车辆之间的物理空气动力学相互作用相结合。结果是一系列描述,当排中是适当的策略时,以及产生紧急排行行为的描述性最佳控制法。最后,我们在模拟中展示了这些属性。
translated by 谷歌翻译
当我们转向越来越复杂的网络物理系统(CPS)时,需要新方法来实时计划有效的状态轨迹。在本文中,我们提出了一种方法来显着降低对一类CPS解决最佳控制问题的复杂性。我们利用差分平稳度的性质来简化Euler-拉格朗日方程,这简化消除了一般情况下出现的数值不稳定性。我们还提出了一种明确的微分方程,描述了最佳状态轨迹的演变,我们扩展了我们的结果,以考虑无约束和受限制的情况。此外,我们通过在具有障碍物的环境中生成双积分代理的最佳轨迹来证明我们的方法的性能。在仿真中,与现有的基于焊接的最佳控制库相比,我们的方法显示了30%的成本降低,并且计算速度提高了几乎3倍。
translated by 谷歌翻译
小型航空车的重量,空间和功率限制通常会阻止现代控制技术的应用,而无需简化大量模型。此外,高速敏捷行为(例如在无人机赛车中表现出来的行为)使这些简化的模型过于不可靠,无法安全至关重要。在这项工作中,我们介绍了时变备份控制器(TBC)的概念:用户指定的操作与备份控制器相结合,该备份控制器生成了参考轨迹,从而确保了非线性系统的安全性。与传统的备份控制器相比,TBC减少了保守主义,可以直接应用于多机构协调以确保安全性。从理论上讲,我们提供了严格减少保守主义的条件,描述了如何在多个TBC之间切换并显示如何将TBC嵌入多代理设置。在实验上,我们验证TBC在过滤飞行员的动作时会安全地增加操作自由,并在将两个四肢的分散安全过滤应用于分散的安全过滤时,证明了稳健性和计算效率。
translated by 谷歌翻译
研究界,工业和社会中地面移动机器人(MRS)和无人机(UAV)的重要性正在迅速发展。如今,这些代理中的许多代理都配备了通信系统,在某些情况下,对于成功完成某些任务至关重要。在这种情况下,我们已经开始见证在机器人技术和通信的交集中开发一个新的跨学科研究领域。该研究领域的意图是将无人机集成到5G和6G通信网络中。这项研究无疑将在不久的将来导致许多重要的应用。然而,该研究领域发展的主要障碍之一是,大多数研究人员通过过度简化机器人技术或通信方面来解决这些问题。这阻碍了达到这个新的跨学科研究领域的全部潜力的能力。在本教程中,我们介绍了一些建模工具,从跨学科的角度来解决涉及机器人技术和通信的问题所需的一些建模工具。作为此类问题的说明性示例,我们将重点放在本教程上,讨论通信感知轨迹计划的问题。
translated by 谷歌翻译
形成控制问题是群体智能领域中最关心的主题之一,通常通过常规数学方法来解决。然而,在本文中,我们提出了一种元疗法方法,该方法利用了一种自然的共同进化策略来解决一群导弹的形成控制问题。导弹群是由具有异质参考目标的二阶系统建模的,并将指数误差函数作为目标函数,以使群体融合到满足某些形成要求的最佳平衡状态。为了关注本地最佳和不稳定进化的问题,我们纳入了一种新颖的基于模型的政策约束和人口适应策略,从而大大减轻了绩效退化。通过在网络通信领域中应用Molloy reed标准,我们开发了一种自适应拓扑方法,该方法可以通过理论和实验验证节点失败及其有效性下的连通性及其有效性。实验结果有助于提议的形成控制方法的有效性。更重要的是,我们表明将通用形成控制问题视为马尔可夫决策过程(MDP)并通过迭代学习解决它是可行的。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
平衡安全性和性能是现代控制系统设计中的主要挑战之一。此外,至关重要的是,在不诱导不必要的保守性降低绩效的情况下,确保安全至关重要。在这项工作中,我们提出了一种通过控制屏障功能(CBF)来进行安全关键控制合成的建设性方法。通过通过CBF过滤手工设计的控制器,我们能够达到性能行为,同时提供严格的安全保证。面对干扰,通过投入到国家安全的概念(ISSF)同时实现了稳健的安全性和性能。我们通过与倒置的示例同时开发CBF设计方法来采用教程方法,从而使设计过程混凝土中的挑战和敏感性。为了确定拟议方法的能力,我们考虑通过CBFS以无需拖车的8级卡车的形式来考虑通过CBF的CBF进行安全至关重要的设计。通过实验,我们看到了卡车驱动系统中未建模的干扰对CBF提供的安全保证的影响。我们表征了这些干扰并使用ISSF,生产出可靠的控制器,该控制器可以在不承认性能的情况下实现安全性。我们在模拟中评估了我们的设计,并且是在实验中首次在汽车系统上评估我们的设计。
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
尽管动态游戏为建模代理的互动提供了丰富的范式,但为现实世界应用程序解决这些游戏通常具有挑战性。许多现实的交互式设置涉及一般的非线性状态和输入约束,它们彼此之间的决策相结合。在这项工作中,我们使用约束的游戏理论框架开发了一个高效且快速的计划者,用于在受限设置中进行交互式计划。我们的关键见解是利用代理的目标和约束功能的特殊结构,这些功能在多代理交互中进行快速和可靠的计划。更确切地说,我们确定了代理成本功能的结构,在该结构下,由此产生的动态游戏是受约束潜在动态游戏的实例。受限的潜在动态游戏是一类游戏,而不是解决一组耦合的约束最佳控制问题,而是通过解决单个约束最佳控制问题来找到NASH平衡。这简化了限制的交互式轨迹计划。我们比较了涉及四个平面代理的导航设置中方法的性能,并表明我们的方法平均比最先进的速度快20倍。我们进一步在涉及一个四型和两个人的导航设置中对我们提出的方法提供了实验验证。
translated by 谷歌翻译
用无人驾驶飞行器(无人机)的操纵和抓住目前需要准确定位,并且通常以减小的速度执行,以确保成功的掌握。这是由于典型的无人机只能容纳具有少量自由度的刚性机械手,这限制了它们可以补偿由车辆定位误差引起的扰动的能力。此外,无人机必须最小化外部接触力以保持稳定性。另一方面,生物系统利用柔软度来克服类似的限制,并利用遵守来实现积极的抓握。本文调查了软空气机械手的控制和轨迹优化,由四射线和肌腱驱动的软夹持器组成,其中可以充分利用柔软度的优点。据我们所知,这是软操作和UAV控制之间交叉路口的第一个工作。我们介绍了四轮电机和软夹具的解耦方法,组合(i)几何控制器和四峰值(刚性)基础的最小拍摄轨迹优化,(ii)准静态有限元模型和控制空间软夹具的插值。我们证明了尽管添加了软载荷,但几何控制器渐近稳定了四轮流速度和姿态。最后,我们在逼真的软动力学模拟器中评估所提出的系统,并表明:(i)几何控制器对软有效载荷相对不敏感,(ii)尽管定位和初始条件不准确和初始条件,平台可以可靠地掌握未知对象,以及(iii)解耦控制器可用于实时执行。
translated by 谷歌翻译
本文介绍了一个新颖的社会偏好意识分散的安全控制框架,以解决避免多机构碰撞的责任分配问题。考虑到代理不一定会以对称方式进行合作,本文着重于具有不同合作水平的异质代理之间的半合作行为。利用社会价值取向(SVO)来量化个人自私的思想,我们提出了一个新颖的责任相关社会价值取向(R-SVO)的新颖概念,以表达成对代理之间的预期相对社会含义。这用于根据相应的责任份额来重新定义每个代理商的社会偏好或个性,以促进协调方案,例如所有代理商以不对称方式互动的半合件碰撞避免。通过通过拟议的本地成对责任权重纳入这种相对的社会影响,我们为个人代理人开发了与责任相关的控制屏障功能的安全控制框架,并通过正式可证明的安全保证可以实现多代理碰撞的避免。提供了模拟来证明在多个多代理导航任务中所提出的框架的有效性和效率,例如位置交换游戏,自动驾驶汽车公路公路坡道合并方案以及圆形交换游戏。
translated by 谷歌翻译
无人驾驶飞行器(无人机)现在越来越多地进入业余和Com-Mercial用户。最近的研究中提出了几种类型的空域结构,包括几种结构化的自由飞行概念。本文为简单地,分布式协调结构化空域概念中的多变量的动作。这是作为自由飞行问题的制定,包括到目的地线和互际碰撞避免的融合。每个多变电器的目的行是先验的。此外,Lyapunov样功能是精心设计的,并进行了建议的分布式控制的正式分析和证明,表明可以解决自由飞行控制问题。更重要的是,由所提出的控制器,一旦进入另一个的安全区域,多个电源可以尽快远离另一个。给出了模拟和实验表明了所提出的方法的有效性。
translated by 谷歌翻译
This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method designs a potential field to achieve the target density and generate trajectories using potential gradients to direct UAVs to regions of a higher potential. Collisions are prevented by implementing a distance field and correcting the agent's directional vector if the distance threshold is reached. The method is successfully tested for volume coverage and visual inspection of complex structures such as wind turbines and a bridge. For visual inspection, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure is designed and this field's gradient provides the camera orientation throughout the trajectory. The bridge inspection test case is compared with a state-of-the-art method where the HEDAC algorithm allowed more surface area to be inspected under the same conditions. The limitations of the HEDAC method are analyzed, focusing on computational efficiency and adequacy of spatial coverage to approximate the surface coverage. The proposed methodology offers flexibility in various setup parameters and is applicable to real-world inspection tasks.
translated by 谷歌翻译
在本文中,我们分析了具有基于视觉导航的无人机(UAV)的时间延迟动力学对控制器设计的影响。时间延迟是网络物理系统中不可避免的现象,并且对无人机的控制器设计和轨迹产生具有重要意义。时间延迟对无人机动态的影响随着基于视力较慢的导航堆栈的使用而增加。我们表明,文献中的现有模型不包括时间延迟,不适合控制器调整,因为一个微不足道的解决方案始终存在错误的解决方案。我们确定的微不足道的解决方案表明,使用无限控制器的利益来实现最佳性能,这与实际发现相矛盾。我们通过引入无人机的新型非线性时间延迟模型来避免这种缺点,然后获得与每个UAV控制回路相对应的一组线性解耦模型。分析了角度和高度动力学的线性时间延迟模型的成本函数,与无延迟模型相反,我们显示了有限的最佳控制器参数的存在。由于使用了时间延迟模型,我们在实验上表明,所提出的模型准确地表示系统稳定性限制。由于时间延迟的考虑,我们使用基于视觉探视的无人机(VO)导航,在跟踪峰值速度为2.09 m/s的lemsistate轨迹时,我们实现了RMSE 5.01 cm的跟踪结果,这与最新-艺术。
translated by 谷歌翻译
在本文中,我们提出了一种反应性约束导航方案,并避免了无人驾驶汽车(UAV)的嵌入式障碍物,以便在障碍物密集的环境中实现导航。拟议的导航体系结构基于非线性模型预测控制(NMPC),并利用板载2D激光雷达来检测障碍物并在线转换环境的关键几何信息为NMPC的参数约束,以限制可用位置空间的可用位置空间无人机。本文还重点介绍了所提出的反应导航方案的现实实施和实验验证,并将其应用于多个具有挑战性的实验室实验中,我们还与相关的反应性障碍物避免方法进行了比较。提出的方法中使用的求解器是优化引擎(开放)和近端平均牛顿进行最佳控制(PANOC)算法,其中采用了惩罚方法来正确考虑导航任务期间的障碍和输入约束。拟议的新颖方案允许快速解决方案,同时使用有限的车载计算能力,这是无人机的整体闭环性能的必需功能,并在多个实时场景中应用。内置障碍物避免和实时适用性的结合使所提出的反应性约束导航方案成为无人机的优雅框架,能够执行快速的非线性控制,本地路径计划和避免障碍物,所有框架都嵌入了控制层中。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译