As robotic systems continue to address emerging issues in areas such as logistics, mobility, manufacturing, and disaster response, it is increasingly important to rapidly generate safe and energy-efficient trajectories. In this article, we present a new approach to plan energy-optimal trajectories through cluttered environments containing polygonal obstacles. In particular, we develop a method to quickly generate optimal trajectories for a double-integrator system, and we show that optimal path planning reduces to an integer program. To find an efficient solution, we present a distance-informed prefix search to efficiently generate optimal trajectories for a large class of environments. We demonstrate that our approach, while matching the performance of RRT* and Probabilistic Road Maps in terms of path length, outperforms both in terms of energy cost and computational time by up to an order of magnitude. We also demonstrate that our approach yields implementable trajectories in an experiment with a Crazyflie quadrotor.
translated by 谷歌翻译
当我们转向越来越复杂的网络物理系统(CPS)时,需要新方法来实时计划有效的状态轨迹。在本文中,我们提出了一种方法来显着降低对一类CPS解决最佳控制问题的复杂性。我们利用差分平稳度的性质来简化Euler-拉格朗日方程,这简化消除了一般情况下出现的数值不稳定性。我们还提出了一种明确的微分方程,描述了最佳状态轨迹的演变,我们扩展了我们的结果,以考虑无约束和受限制的情况。此外,我们通过在具有障碍物的环境中生成双积分代理的最佳轨迹来证明我们的方法的性能。在仿真中,与现有的基于焊接的最佳控制库相比,我们的方法显示了30%的成本降低,并且计算速度提高了几乎3倍。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
本文提出了一个基于抽样的运动计划者,该计划将RRT*(迅速探索随机树星)集成到预计运动原始图的数据库中,以减轻其计算负载,并允许在动态或部分已知的环境中进行运动计划。该数据库是通过在某些网格空间中考虑一组初始状态和最终状态对来构建的,并确定每个对与系统动力学和约束兼容的最佳轨迹,同时最小化成本。通过在网格状态空间中提取样品并在数据库中选择将其连接到现有节点的数据库中的最佳无障碍运动原始性,将节点逐渐添加到RRT*算法中可行轨迹树中的节点。如果可以通过无障碍的运动原始的原始较低的成本从新的采样状态达到一些节点,则树将重新接线。因此,运动计划的计算更密集的部分被移至数据库构建的初步离线阶段(以网格造成的某些性能退化为代价。可以对网格分辨率进行调整,以便在数据库的最优性和大小之间妥协。由于网格分辨率为零,并且采样状态的数量增长到无穷大,因此规划器被证明是渐近的最佳选择。
translated by 谷歌翻译
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
分列已被利用作为用于最小化能量消耗的车辆方法。在本文中,我们提出了一个限制驱动的最佳控制框架,从而产生了在开放式运输系统中运行的连接和自动车辆的紧急排行行为。我们的方法将最近的洞察于约束驱动的最佳控制与高速公路设置中车辆之间的物理空气动力学相互作用相结合。结果是一系列描述,当排中是适当的策略时,以及产生紧急排行行为的描述性最佳控制法。最后,我们在模拟中展示了这些属性。
translated by 谷歌翻译
多机器人系统通过整体对应物提供增强的能力,但它们以增加的协调复杂化。为了减少复杂性并使文献中的多机器人运动规划(MRMP)方法采用牺牲最优性或动态可行性的解耦方法采用解耦方法。在本文中,我们提出了一种凸起方法,即“抛物线弛豫”,为所有机器人的耦合关节空间中MRMP产生最佳和动态可行的轨迹。我们利用建议的放松来解决问题复杂性,并在极端集群环境中规划超过一百个机器人的计算途径。我们采取了一种多级优化方法,包括i)数学地配制MRMP作为非凸优化,II)将问题提升到更高的尺寸空间,III)通过所提出的计算有效的抛物线松弛和IV凸出问题。使用迭代搜索惩罚,以确保对原始问题的可行性和近最佳解决方案的可行性和恢复。我们的数值实验表明,所提出的方法能够在比最先进的成功率上具有更高成功率的挑战运动规划问题的最佳和动态可行的轨迹,但在高度密集的环境中,在一百个机器人中仍然在计算上仍然在计算上。 。
translated by 谷歌翻译
在本文中,提出了一种基于静态障碍的环境中实验室规模3D龙门起重机的基于抽样的轨迹计划算法,并呈现了龙门起重机系统速度和加速度的范围。重点是针对差异化系统开发快速运动计划算法,在该系统中可以存储和重复使用中间结果以进行进一步的任务,例如重新植入。所提出的方法基于知情的最佳迅速探索随机树算法(知情RRT*),该算法用于构建轨迹树,这些树在开始和/或目标状态变化时重新使用。与最先进的方法相反,拟议的运动计划算法包含了线性二次最低时间(LQTM)本地计划者。因此,在提出的算法中直接考虑了动态特性,例如时间最优性和轨迹的平滑度。此外,通过集成分支和结合方法以在轨迹树上执行修剪过程,提出的算法可以消除树中没有促成更好解决方案的点中的点。这有助于抑制记忆消耗并降低运动(RE)计划期间的计算复杂性。 3D龙门起重机的经过验证的数学模型的仿真结果显示了所提出的方法的可行性。
translated by 谷歌翻译
由于多重冲突目标和非凸起约束上升的数值问题,快速生成无人机的最佳追逐动态,以遵循障碍物之间的动态目标是挑战。本研究建议解决具有融合的快速可靠的管道的困难,该管道包含1)目标运动预测和2)追逐计划者。它们基于采样和检查方法,包括生成高质量候选基元和具有光计算负荷的可行性测试。我们通过选择由过去观察构建的一组候选者中选择最佳预测来预测目标的运动。基于预测,我们构建了一组预期追逐轨迹,其减少了高阶导数,同时从预测的目标运动保持所需的相对距离。然后,候选轨迹在追逐者的安全性和朝向目标的可视性上进行测试,而不会逼近约束。在涉及动态障碍的具有挑战性的情况下,彻底评估了所提出的算法。此外,从目标识别到追逐运动规划的整体过程在无人机上完全实施,展示了现实世界的适用性。
translated by 谷歌翻译
基于采样的运动计划者,例如RRT*和BIT*,当应用于运动动力运动计划时,依靠转向功能来生成连接采样状态的时间优势解决方案。实施精确的转向功能需要针对时间最佳控制问题的分析解决方案,或者非线性编程(NLP)求解器以鉴于系统的动力学方程式解决边界值问题。不幸的是,对于许多实际域而言,分析解决方案不可用,而NLP求解器在计算上非常昂贵,因此快速且最佳的动力动力运动计划仍然是一个开放的问题。我们通过引入状态监督转向功能(S3F)来提供解决此问题的解决方案,这是一种学习时间优势转向功能的新方法。 S3F能够比其NLP对应物更快地为转向函数的数量级产生近乎最佳的解决方案。在三个具有挑战性的机器人域进行的实验表明,使用S3F的RRT*在解决方案成本和运行时都显着优于最先进的计划方法。我们进一步提供了RRT*修改以使用S3F的概率完整性的证明。
translated by 谷歌翻译
本文介绍了经典懒惰的概率路线图算法(Lazy PRM)的修订,该算法是由配对PRM和一种新颖的分支和切割(BC)算法产生的。切割是动态生成的约束,这些约束在PRM选择的几何图上施加的最低成本路径。削减消除无法映射到满足适当定义运动学约束的平滑计划中的路径。我们通过在最低成本路径中将花键拟合到顶点来生成候选平滑计划。使用最近提出的算法对计划进行了验证,该算法将它们映射到有限的痕迹中,而无需选择固定的离散步骤。痕量元素准确地描述了计划交叉约束边界何时模拟算术精度。我们使用我们最近提出的谷仓基准的方法评估了几个计划者,我们报告了方法可扩展性的证据。
translated by 谷歌翻译
我们为非全面移动机器人设计了MPC方法,并在分析上表明,随着时间的变化,线性化的系统可以在跟踪任务中的来源周围产生渐近稳定性。为了避免障碍物,我们提出了速度空间中的约束,该约束根据当前状态明确耦合两个控件输入。
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
本文开发了连续的蓬松蛋白可区分编程(连续PDP)的方法,该方法使机器人能够从少数稀疏的关键帧中学习目标函数。带有一些时间戳记的密钥帧是所需的任务空间输出,预计机器人将顺序遵循。密钥帧的时间戳可能与机器人的实际执行时间不同。该方法共同找到一个目标函数和一个盘绕函数,以使机器人的产生轨迹顺序遵循关键帧,并以最小的差异损失。连续的PDP通过有效求解机器人轨迹相对于未知参数的梯度,可以最大程度地减少投影梯度下降的差异损失。该方法首先在模拟机器人臂上进行评估,然后应用于6-DOF四极管,以在未建模的环境中学习目标函数。结果表明,该方法的效率,其处理密钥帧和机器人执行之间的时间错位的能力以及将客观学习对看不见的运动条件的概括。
translated by 谷歌翻译
Designing safety-critical control for robotic manipulators is challenging, especially in a cluttered environment. First, the actual trajectory of a manipulator might deviate from the planned one due to the complex collision environments and non-trivial dynamics, leading to collision; Second, the feasible space for the manipulator is hard to obtain since the explicit distance functions between collision meshes are unknown. By analyzing the relationship between the safe set and the controlled invariant set, this paper proposes a data-driven control barrier function (CBF) construction method, which extracts CBF from distance samples. Specifically, the CBF guarantees the controlled invariant property for considering the system dynamics. The data-driven method samples the distance function and determines the safe set. Then, the CBF is synthesized based on the safe set by a scenario-based sum of square (SOS) program. Unlike most existing linearization based approaches, our method reserves the volume of the feasible space for planning without approximation, which helps find a solution in a cluttered environment. The control law is obtained by solving a CBF-based quadratic program in real time, which works as a safe filter for the desired planning-based controller. Moreover, our method guarantees safety with the proven probabilistic result. Our method is validated on a 7-DOF manipulator in both real and virtual cluttered environments. The experiments show that the manipulator is able to execute tasks where the clearance between obstacles is in millimeters.
translated by 谷歌翻译
By utilizing only depth information, the paper introduces a novel but efficient local planning approach that enhances not only computational efficiency but also planning performances for memoryless local planners. The sampling is first proposed to be based on the depth data which can identify and eliminate a specific type of in-collision trajectories in the sampled motion primitive library. More specifically, all the obscured primitives' endpoints are found through querying the depth values and excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. On the other hand, we furthermore propose a steering mechanism also based on the depth information to effectively prevent an autonomous vehicle from getting stuck when facing a large convex obstacle, providing a higher level of autonomy for a planning system. Our steering technique is theoretically proved to be complete in scenarios of convex obstacles. To evaluate effectiveness of the proposed DEpth based both Sampling and Steering (DESS) methods, we implemented them in the synthetic environments where a quadrotor was simulated flying through a cluttered region with multiple size-different obstacles. The obtained results demonstrate that the proposed approach can considerably decrease computing time in local planners, where more trajectories can be evaluated while the best path with much lower cost can be found. More importantly, the success rates calculated by the fact that the robot successfully navigated to the destinations in different testing scenarios are always higher than 99.6% on average.
translated by 谷歌翻译
双向运动规划与其单向对应物相比,平均地减少计划时间。在单次查询可行的运动规划中,使用双向搜索来查找连续运动计划需要前向和反向搜索树之间的边缘连接。这样的树木连接需要解决两点边值问题问题(BVP)。然而,两点BVP解决方案可能是困难的或不可能计算许多系统。我们提出了一种新的双向搜索策略,不需要解决两点BVP。反向树的成本信息而不是直接连接前向和反向树木,而是用作前向搜索的指导启发式。这使得前向搜索能够快速收敛到可行的解决方案而不解决两点BVP。我们提出了两个新的算法(GBRRT和GABRRT),使用此策略并使用多种动态系统和现实世界硬件实验运行多个软件模拟,以表明我们的算法表现出对现有最先进的方法进行的或更好在快速找到初始可行的解决方案时。
translated by 谷歌翻译