滚动轴承是旋转机械的最关键组成部分。及时识别有缺陷的轴承可能会阻止整个机械系统的故障。由于机器零件的快速发展,机械状况监测场已进入大数据阶段。当使用大量数据时,手动特征提取方法的缺点是效率低下和不准确。近年来,诸如深度学习方法之类的数据驱动方法已成功用于机械智能故障检测。卷积神经网络(CNN)主要用于早期研究中,以检测和识别轴承断层。但是,CNN模型遭受了难以管理故障时间信息的缺点,这导致缺乏分类结果。在这项研究中,使用最先进的视觉变压器(VIT)对轴承缺陷进行了分类。使用Case Western Reserve University(CWRU)实验室实验数据对轴承缺陷进行了分类。该研究还考虑了除正常轴承条件外,在0负载情况下的13种不同类型的缺陷。使用短时傅立叶变换(STFT),将振动信号转换为2D时频图像。 2D时频图像用作VIT的输入参数。该模型的总体准确度为98.8%。
translated by 谷歌翻译
通过深度学习(DL)大大扩展了数据驱动故障诊断模型的范围。然而,经典卷积和反复化结构具有计算效率和特征表示的缺陷,而基于注意机制的最新变压器架构尚未应用于该字段。为了解决这些问题,我们提出了一种新颖的时变电片(TFT)模型,其灵感来自序列加工的香草变压器大规模成功。特别是,我们设计了一个新的笨蛋和编码器模块,以从振动信号的时频表示(TFR)中提取有效抽象。在此基础上,本文提出了一种基于时变电片的新的端到端故障诊断框架。通过轴承实验数据集的案例研究,我们构建了最佳变压器结构并验证了其故障诊断性能。与基准模型和其他最先进的方法相比,证明了所提出的方法的优越性。
translated by 谷歌翻译
我们的粮食安全建立在土壤的基础上。如果土壤不健康,农民将无法用纤维,食物和燃料喂养我们。准确预测土壤的类型有助于规划土壤的使用,从而提高生产率。这项研究采用了最先进的视觉变压器,并与SVM,Alexnet,Resnet和CNN等不同模型进行了比较。此外,这项研究还着重于区分不同的视觉变压器体系结构。对于土壤类型的分类,数据集由4种不同类型的土壤样品组成,例如冲积,红色,黑色和粘土。 Visual Transformer模型在测试和测试时达到98.13%的训练和93.62%的范围,在测试和训练精度方面都优于其他模型。视觉变压器的性能超过了其他模型的性能至少2%。因此,新颖的视觉变压器可用于计算机视觉任务,包括土壤分类。
translated by 谷歌翻译
蚊子传播的疾病(MBD),例如登革热病毒,基孔肯雅病毒和西尼罗河病毒,每年在全球造成超过100万人死亡。由于许多这样的疾病都被伊蚊和库氏蚊子传播,因此跟踪这些幼虫对于缓解MBD的传播至关重要。即使公民科学成长并获得了较大的蚊子图像数据集,蚊子图像的手动注释变得越来越耗时且效率低下。先前的研究使用计算机视觉识别蚊子物种,卷积神经网络(CNN)已成为图像分类的事实。但是,这些模型通常需要大量的计算资源。这项研究介绍了视觉变压器(VIT)在比较研究中的应用,以改善伊蚊和库尔克斯幼虫的图像分类。在蚊子幼虫图像数据上对两个VIT模型,Vit-Base和CVT-13以及两个CNN模型进行了RESNET-18和CORVNEXT的培训,并比较确定最有效的模型,以将蚊子幼虫区分为AEDES或CULEX。测试表明,Convnext获得了所有分类指标的最大值,证明了其对蚊子幼虫分类的生存能力。基于这些结果,未来的研究包括通过结合CNN和Transformer架构元素来创建专门为蚊子幼虫分类设计的模型。
translated by 谷歌翻译
与卷积神经网络(CNN)相比,视觉变压器(VIT)正在变得越来越流行和主导技术。作为计算机视觉中苛刻的技术,VIT已成功解决了各种视觉问题,同时着眼于远程关系。在本文中,我们首先介绍自我注意机制的基本概念和背景。接下来,我们提供了最新表现最好的VIT方法的全面概述,该方法在强度和弱点,计算成本以及培训和测试数据集方面描述。我们彻底比较了流行基准数据集上各种VIT算法和大多数代表性CNN方法的性能。最后,我们通过有见地的观察来探索一些局限性,并提供进一步的研究方向。项目页面以及论文集可通过https://github.com/khawar512/vit-survey获得
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
Designing efficient and labor-saving prosthetic hands requires powerful hand gesture recognition algorithms that can achieve high accuracy with limited complexity and latency. In this context, the paper proposes a compact deep learning framework referred to as the CT-HGR, which employs a vision transformer network to conduct hand gesture recognition using highdensity sEMG (HD-sEMG) signals. The attention mechanism in the proposed model identifies similarities among different data segments with a greater capacity for parallel computations and addresses the memory limitation problems while dealing with inputs of large sequence lengths. CT-HGR can be trained from scratch without any need for transfer learning and can simultaneously extract both temporal and spatial features of HD-sEMG data. Additionally, the CT-HGR framework can perform instantaneous recognition using sEMG image spatially composed from HD-sEMG signals. A variant of the CT-HGR is also designed to incorporate microscopic neural drive information in the form of Motor Unit Spike Trains (MUSTs) extracted from HD-sEMG signals using Blind Source Separation (BSS). This variant is combined with its baseline version via a hybrid architecture to evaluate potentials of fusing macroscopic and microscopic neural drive information. The utilized HD-sEMG dataset involves 128 electrodes that collect the signals related to 65 isometric hand gestures of 20 subjects. The proposed CT-HGR framework is applied to 31.25, 62.5, 125, 250 ms window sizes of the above-mentioned dataset utilizing 32, 64, 128 electrode channels. The average accuracy over all the participants using 32 electrodes and a window size of 31.25 ms is 86.23%, which gradually increases till reaching 91.98% for 128 electrodes and a window size of 250 ms. The CT-HGR achieves accuracy of 89.13% for instantaneous recognition based on a single frame of HD-sEMG image.
translated by 谷歌翻译
To ensure proper knowledge representation of the kitchen environment, it is vital for kitchen robots to recognize the states of the food items that are being cooked. Although the domain of object detection and recognition has been extensively studied, the task of object state classification has remained relatively unexplored. The high intra-class similarity of ingredients during different states of cooking makes the task even more challenging. Researchers have proposed adopting Deep Learning based strategies in recent times, however, they are yet to achieve high performance. In this study, we utilized the self-attention mechanism of the Vision Transformer (ViT) architecture for the Cooking State Recognition task. The proposed approach encapsulates the globally salient features from images, while also exploiting the weights learned from a larger dataset. This global attention allows the model to withstand the similarities between samples of different cooking objects, while the employment of transfer learning helps to overcome the lack of inductive bias by utilizing pretrained weights. To improve recognition accuracy, several augmentation techniques have been employed as well. Evaluation of our proposed framework on the `Cooking State Recognition Challenge Dataset' has achieved an accuracy of 94.3%, which significantly outperforms the state-of-the-art.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
执法和城市安全受到监视系统中的暴力事件的严重影响。尽管现代(智能)相机广泛可用且负担得起,但在大多数情况下,这种技术解决方案无能为力。此外,监测CCTV记录的人员经常显示出迟来的反应,从而导致对人和财产的灾难。因此,对迅速行动的暴力自动检测至关重要。拟议的解决方案使用了一种新颖的端到端深度学习视频视觉变压器(Vivit),可以在视频序列中熟练地辨别战斗,敌对运动和暴力事件。该研究提出了利用数据增强策略来克服较弱的电感偏见的缺点,同时在较小的培训数据集中训练视觉变压器。评估的结果随后可以发送给当地有关当局,可以分析捕获的视频。与最先进的(SOTA)相比,所提出的方法在某些具有挑战性的基准数据集上实现了吉祥的性能。
translated by 谷歌翻译
轴承诊断对于降低旋转机器的损害风险并进一步改善经济利润至关重要。最近,以深度学习为代表的机器学习在轴承诊断方面取得了巨大进展。但是,将深度学习应用到这样的任务仍然面临一个主要问题。众所周知,深层网络是黑匣子。很难知道模型如何分类分类背后的正常原理和物理原理的错误信号。为了解决可解释性问题,首先,我们原型是一个具有最近发明的二次神经元的卷积网络。由于二次神经元的特征表示能力,这种二次神经元授权网络可以鉴定噪声轴承数据。此外,我们通过将学到的二次功能分解为类似于注意力的二次神经元(称为Qttention)的注意机制独立得出了注意力机制,从而使模型具有固有解释的二次神经元。公众和我们的数据集进行的实验表明,提出的网络可以促进有效且可解释的轴承故障诊断。
translated by 谷歌翻译
Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate both representations and their relationship. Since natural images are of high complexity with abundant detail and color information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales and locations. In this paper, we point out that the attention inside these local patches are also essential for building visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer (TNT). Specifically, we regard the local patches (e.g., 16×16) as "visual sentences" and present to further divide them into smaller patches (e.g., 4×4) as "visual words". The attention of each word will be calculated with other words in the given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of the state-of-the-art visual transformer with similar computational cost.
translated by 谷歌翻译
视觉变压器正在成为解决计算机视觉问题的强大工具。最近的技术还证明了超出图像域之外的变压器来解决许多与视频相关的任务的功效。其中,由于其广泛的应用,人类的行动识别是从研究界受到特别关注。本文提供了对动作识别的视觉变压器技术的首次全面调查。我们朝着这个方向分析并总结了现有文献和新兴文献,同时突出了适应变形金刚以进行动作识别的流行趋势。由于其专业应用,我们将这些方法统称为``动作变压器''。我们的文献综述根据其架构,方式和预期目标为动作变压器提供了适当的分类法。在动作变压器的背景下,我们探讨了编码时空数据,降低维度降低,框架贴片和时空立方体构造以及各种表示方法的技术。我们还研究了变压器层中时空注意的优化,以处理更长的序列,通常通过减少单个注意操作中的令牌数量。此外,我们还研究了不同的网络学习策略,例如自我监督和零局学习,以及它们对基于变压器的行动识别的相关损失。这项调查还总结了在具有动作变压器重要基准的评估度量评分方面取得的进步。最后,它提供了有关该研究方向的挑战,前景和未来途径的讨论。
translated by 谷歌翻译
轴承是容易出乎意料断层的旋转机的重要组成部分之一。因此,轴承诊断和状况监测对于降低众多行业的运营成本和停机时间至关重要。在各种生产条件下,轴承可以在一系列载荷和速度下进行操作,这会导致与每种故障类型相关的不同振动模式。正常数据很足够,因为系统通常在所需条件下工作。另一方面,故障数据很少见,在许多情况下,没有记录故障类别的数据。访问故障数据对于开发数据驱动的故障诊断工具至关重要,该工具可以提高操作的性能和安全性。为此,引入了基于条件生成对抗网络(CGAN)的新型算法。该算法对任何实际故障条件的正常和故障数据进行培训,从目标条件的正常数据中生成故障数据。所提出的方法在现实世界中的数据集上进行了验证,并为不同条件生成故障数据。实施了几种最先进的分类器和可视化模型,以评估合成数据的质量。结果证明了所提出的算法的功效。
translated by 谷歌翻译
Covid-19是一种攻击上呼吸道和肺部的新型病毒。它的人对人的传播性非常迅速,这在个人生活的各个方面都引起了严重的问题。尽管一些感染的人可能仍然完全无症状,但经常被目睹有轻度至重度症状。除此之外,全球成千上万的死亡案件表明,检测Covid-19是社区的紧急需求。实际上,这是在筛选医学图像(例如计算机断层扫描(CT)和X射线图像)的帮助下进行的。但是,繁琐的临床程序和大量的每日病例对医生构成了巨大挑战。基于深度学习的方法在广泛的医疗任务中表现出了巨大的潜力。结果,我们引入了一种基于变压器的方法,用于使用紧凑卷积变压器(CCT)自动从X射线图像中自动检测COVID-19。我们的广泛实验证明了该方法的疗效,精度为98%,比以前的作品表现优于先前的作品。
translated by 谷歌翻译
随着变压器作为语言处理的标准及其在计算机视觉方面的进步,参数大小和培训数据的数量相应地增长。许多人开始相信,因此,变形金刚不适合少量数据。这种趋势引起了人们的关注,例如:某些科学领域中数据的可用性有限,并且排除了该领域研究资源有限的人。在本文中,我们旨在通过引入紧凑型变压器来提出一种小规模学习的方法。我们首次表明,具有正确的尺寸,卷积令牌化,变压器可以避免在小数据集上过度拟合和优于最先进的CNN。我们的模型在模型大小方面具有灵活性,并且在获得竞争成果的同时,参数可能仅为0.28亿。当在CIFAR-10上训练Cifar-10,只有370万参数训练时,我们的最佳模型可以达到98%的准确性,这是与以前的基于变形金刚的模型相比,数据效率的显着提高,比其他变压器小于10倍,并且是15%的大小。在实现类似性能的同时,重新NET50。 CCT还表现优于许多基于CNN的现代方法,甚至超过一些基于NAS的方法。此外,我们在Flowers-102上获得了新的SOTA,具有99.76%的TOP-1准确性,并改善了Imagenet上现有基线(82.71%精度,具有29%的VIT参数)以及NLP任务。我们针对变压器的简单而紧凑的设计使它们更可行,可以为那些计算资源和/或处理小型数据集的人学习,同时扩展了在数据高效变压器中的现有研究工作。我们的代码和预培训模型可在https://github.com/shi-labs/compact-transformers上公开获得。
translated by 谷歌翻译
这项研究提出了一个可靠的模型,用于识别具有最高精度的不同建筑材料,该模型被利用为用于广泛的施工应用(例如自动进度监控)的有利工具。在这项研究中,一种称为视觉变压器(VIT)的新型深度学习结构用于检测和分类建筑材料。使用不同的图像数据集评估了所采用方法的鲁棒性。为此,对模型进行了训练和测试,并在两个大型不平衡数据集上进行了测试,即建筑材料库(CML)和建筑材料数据集(BMD)。还通过组合CML和BMD来创建更不平衡的数据集并评估使用方法的功能来生成第三个数据集。所达到的结果揭示了评估指标的精度为100%,例如三个不同数据集的每个材料类别的准确性,精度,召回率和F1得分。据信,建议的模型实现了用于检测和分类不同材料类型的强大工具。迄今为止,许多研究试图自动对仍然存在一些错误的各种建筑材料进行分类。这项研究将解决上述缺点,并提出一个模型以更高的精度检测材料类型。所采用的模型也能够被推广到不同的数据集。
translated by 谷歌翻译
随着自我关注机制的发展,变压器模型已经在计算机视觉域中展示了其出色的性能。然而,从完全关注机制带来的大规模计算成为内存消耗的沉重负担。顺序地,记忆的限制降低了改善变压器模型的可能性。为了解决这个问题,我们提出了一种名为耦合器的新的记忆经济性注意力机制,它将注意力映射与两个子矩阵分成并从空间信息中生成对准分数。应用了一系列不同的尺度图像分类任务来评估模型的有效性。实验结果表明,在ImageNet-1K分类任务上,与常规变压器相比,耦合器可以显着降低28%的存储器消耗,同时访问足够的精度要求,并且在占用相同的内存占用时表达了0.92%。结果,耦合器可以用作视觉任务中的有效骨干,并提供关于研究人员注意机制的新颖视角。
translated by 谷歌翻译
在过去的十年中,基于深度学习的算法在遥感图像分析的不同领域中广泛流行。最近,最初在自然语言处理中引入的基于变形金刚的体系结构遍布计算机视觉领域,在该字段中,自我发挥的机制已被用作替代流行的卷积操作员来捕获长期依赖性。受到计算机视觉的最新进展的启发,遥感社区还见证了对各种任务的视觉变压器的探索。尽管许多调查都集中在计算机视觉中的变压器上,但据我们所知,我们是第一个对基于遥感中变压器的最新进展进行系统评价的人。我们的调查涵盖了60多种基于变形金刚的60多种方法,用于遥感子方面的不同遥感问题:非常高分辨率(VHR),高光谱(HSI)和合成孔径雷达(SAR)图像。我们通过讨论遥感中变压器的不同挑战和开放问题来结束调查。此外,我们打算在遥感论文中频繁更新和维护最新的变压器,及其各自的代码:https://github.com/virobo-15/transformer-in-in-remote-sensing
translated by 谷歌翻译