Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modelling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no labelled benchmark for this task. We address this gap by introducing continuous valence and arousal annotations for an existing dataset of children's stories annotated with discrete emotion categories. We collect additional annotations for this data and map the originally categorical labels to the valence and arousal space. Leveraging recent advances in Natural Language Processing, we propose a set of novel Transformer-based methods for predicting valence and arousal signals over the course of written stories. We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context when inferring its emotionality. Moreover, we experiment with additional LSTM and Transformer layers. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .7338 for valence and .6302 for arousal on the test set, demonstrating the suitability of our proposed approach. Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.
translated by 谷歌翻译
幽默是人类情感和认知的重要因素。它的自动理解可以促进更自然的人类设备互动和人工智能的人性化。当前的幽默检测方法仅基于分阶段数据,使其不适用于“现实世界”应用程序。我们通过引入新颖的Passau自发足球教练幽默(Passau-SFCH)数据集来解决这种缺陷,包括大约11个小时的录音。在马丁的幽默风格问卷中提出的幽默及其尺寸(情感和方向)的存在,请注释Passau-SFCH数据集。我们进行了一系列实验,采用了经过预定的变压器,卷积神经网络和专家设计的功能。分析了每种模式(文本,音频,视频)的表现,以进行自发幽默识别,并研究了它们的互补性。我们的发现表明,对于对幽默及其情感的自动分析,面部表情是最有希望的,而幽默方向可以通过基于文本的功能进行建模。结果揭示了各种主题之间的差异,突出了幽默用法和风格的个性。此外,我们观察到决策级融合会产生最佳认可结果。最后,我们在https://www.github.com/eihw/passau-sfch上公开代码。可以根据要求获得Passau-SFCH数据集。
translated by 谷歌翻译
情感是引人入胜的叙事的关键部分:文学向我们讲述了有目标,欲望,激情和意图的人。情绪分析是情感分析更广泛,更大的领域的一部分,并且在文学研究中受到越来越多的关注。过去,文学的情感维度主要在文学诠释学的背景下进行了研究。但是,随着被称为数字人文科学(DH)的研究领域的出现,在文学背景下对情绪的一些研究已经发生了计算转折。鉴于DH仍被形成为一个领域的事实,这一研究方向可以相对较新。在这项调查中,我们概述了现有的情感分析研究机构,以适用于文献。所评论的研究涉及各种主题,包括跟踪情节发展的巨大变化,对文学文本的网络分析以及了解文本的情感以及其他主题。
translated by 谷歌翻译
In recent years, there has been increased interest in building predictive models that harness natural language processing and machine learning techniques to detect emotions from various text sources, including social media posts, micro-blogs or news articles. Yet, deployment of such models in real-world sentiment and emotion applications faces challenges, in particular poor out-of-domain generalizability. This is likely due to domain-specific differences (e.g., topics, communicative goals, and annotation schemes) that make transfer between different models of emotion recognition difficult. In this work we propose approaches for text-based emotion detection that leverage transformer models (BERT and RoBERTa) in combination with Bidirectional Long Short-Term Memory (BiLSTM) networks trained on a comprehensive set of psycholinguistic features. First, we evaluate the performance of our models within-domain on two benchmark datasets: GoEmotion and ISEAR. Second, we conduct transfer learning experiments on six datasets from the Unified Emotion Dataset to evaluate their out-of-domain robustness. We find that the proposed hybrid models improve the ability to generalize to out-of-distribution data compared to a standard transformer-based approach. Moreover, we observe that these models perform competitively on in-domain data.
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
转移学习已通过深度审慎的语言模型广泛用于自然语言处理,例如来自变形金刚和通用句子编码器的双向编码器表示。尽管取得了巨大的成功,但语言模型应用于小型数据集时会过多地适合,并且很容易忘记与分类器进行微调时。为了解决这个忘记将深入的语言模型从一个域转移到另一个领域的问题,现有的努力探索了微调方法,以减少忘记。我们建议DeepeMotex是一种有效的顺序转移学习方法,以检测文本中的情绪。为了避免忘记问题,通过从Twitter收集的大量情绪标记的数据来仪器进行微调步骤。我们使用策划的Twitter数据集和基准数据集进行了一项实验研究。 DeepeMotex模型在测试数据集上实现多级情绪分类的精度超过91%。我们评估了微调DeepeMotex模型在分类Emoint和刺激基准数据集中的情绪时的性能。这些模型在基准数据集中的73%的实例中正确分类了情绪。所提出的DeepeMotex-Bert模型优于BI-LSTM在基准数据集上的BI-LSTM增长23%。我们还研究了微调数据集的大小对模型准确性的影响。我们的评估结果表明,通过大量情绪标记的数据进行微调提高了最终目标任务模型的鲁棒性和有效性。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
随着社交媒体平台上的开放文本数据的最新扩散,在过去几年中,文本的情感检测(ED)受到了更多关注。它有许多应用程序,特别是对于企业和在线服务提供商,情感检测技术可以通过分析客户/用户对产品和服务的感受来帮助他们做出明智的商业决策。在这项研究中,我们介绍了Armanemo,这是一个标记为七个类别的7000多个波斯句子的人类标记的情感数据集。该数据集是从不同资源中收集的,包括Twitter,Instagram和Digikala(伊朗电子商务公司)的评论。标签是基于埃克曼(Ekman)的六种基本情感(愤怒,恐惧,幸福,仇恨,悲伤,奇迹)和另一个类别(其他),以考虑Ekman模型中未包含的任何其他情绪。除数据集外,我们还提供了几种基线模型,用于情绪分类,重点是最新的基于变压器的语言模型。我们的最佳模型在我们的测试数据集中达到了75.39%的宏观平均得分。此外,我们还进行了转移学习实验,以将我们提出的数据集的概括与其他波斯情绪数据集进行比较。这些实验的结果表明,我们的数据集在现有的波斯情绪数据集中具有较高的概括性。 Armanemo可在https://github.com/arman-rayan-sharif/arman-text-emotion上公开使用。
translated by 谷歌翻译
Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.
translated by 谷歌翻译
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.
translated by 谷歌翻译
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a;Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
translated by 谷歌翻译
媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
translated by 谷歌翻译
在本文中,我们将科学文章分类为自然语言处理(NLP)和机器学习(ML)的科学文章(i)是否通过引入击败现有模型或的新型技术来扩展当前的最新技术是否(ii)他们是否主要批评现有的最新技术,即,它相对于某些属性(例如,错误的评估,错误的数据集,误导性的任务规范)不足。我们将(i)下的贡献称为具有\ enquote {正姿势}和(ii)下的贡献为具有\ enquote {负姿势}(对相关工作)。我们注释来自NLP和ML的1.5k纸以超过1.5k的论文来培训基于SCIBERT的模型,以自动根据其标题和抽象来预测论文的立场。然后,我们分析了NLP和ML的最后35年$ 35年以上的41k纸上的大规模趋势,发现随着时间的流逝,论文变得更加积极,但是负面论文也变得更加负面,我们观察到更多的负面论文,我们观察到了更多的负面论文。最近几年。在收到的引用方面,负面论文也更具影响力。
translated by 谷歌翻译
循证医学,医疗保健专业人员在做出决定时提到最佳证据的实践,形成现代医疗保健的基础。但是,它依赖于劳动密集型系统评论,其中域名专家必须从数千个出版物中汇总和提取信息,主要是随机对照试验(RCT)结果转化为证据表。本文通过对两个语言处理任务分解的问题来调查自动化证据表生成:\ texit {命名实体识别},它标识文本中的关键实体,例如药物名称,以及\ texit {关系提取},它会映射它们的关系将它们分成有序元组。我们专注于发布的RCT摘要的句子的自动制表,报告研究结果的结果。使用转移学习和基于变压器的语言表示的原则,开发了两个深度神经网络模型作为联合提取管道的一部分。为了培训和测试这些模型,开发了一种新的金标语,包括来自六种疾病区域的近600个结果句。这种方法表现出显着的优势,我们的系统在多种自然语言处理任务和疾病区域中表现良好,以及在训练期间不均匀地展示疾病域。此外,我们显示这些结果可以通过培训我们的模型仅在200个例句中培训。最终系统是一个概念证明,即证明表的产生可以是半自动的,代表全自动系统评论的一步。
translated by 谷歌翻译
对于自然语言处理应用可能是有问题的,因为它们的含义不能从其构成词语推断出来。缺乏成功的方法方法和足够大的数据集防止了用于检测成语的机器学习方法的开发,特别是对于在训练集中不发生的表达式。我们提出了一种叫做小鼠的方法,它使用上下文嵌入来实现此目的。我们展示了一个新的多字表达式数据集,具有文字和惯用含义,并使用它根据两个最先进的上下文单词嵌入式培训分类器:Elmo和Bert。我们表明,使用两个嵌入式的深度神经网络比现有方法更好地执行,并且能够检测惯用词使用,即使对于训练集中不存在的表达式。我们展示了开发模型的交叉传输,并分析了所需数据集的大小。
translated by 谷歌翻译
在本文中,我们根据两个模型提出了一个端到端情感感知的对话代理:答复情绪预测模型,该模型利用对话的上下文来预测适当的情感,以便代理人在其答复中表达表达;以及一个基于预测的情感和对话的上下文的条件的文本生成模型,以产生既适合上下文又适合情感的答复。此外,我们建议使用情感分类模型来评估代理商在模型开发过程中表达的情感。这使我们能够自动评估代理。自动和人类评估结果都表明,用预定义的句子集明确指导文本生成模型导致了明确的改进,包括表达的情感和生成文本的质量。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
Text classification is a natural language processing (NLP) task relevant to many commercial applications, like e-commerce and customer service. Naturally, classifying such excerpts accurately often represents a challenge, due to intrinsic language aspects, like irony and nuance. To accomplish this task, one must provide a robust numerical representation for documents, a process known as embedding. Embedding represents a key NLP field nowadays, having faced a significant advance in the last decade, especially after the introduction of the word-to-vector concept and the popularization of Deep Learning models for solving NLP tasks, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based Language Models (TLMs). Despite the impressive achievements in this field, the literature coverage regarding generating embeddings for Brazilian Portuguese texts is scarce, especially when considering commercial user reviews. Therefore, this work aims to provide a comprehensive experimental study of embedding approaches targeting a binary sentiment classification of user reviews in Brazilian Portuguese. This study includes from classical (Bag-of-Words) to state-of-the-art (Transformer-based) NLP models. The methods are evaluated with five open-source databases with pre-defined data partitions made available in an open digital repository to encourage reproducibility. The Fine-tuned TLMs achieved the best results for all cases, being followed by the Feature-based TLM, LSTM, and CNN, with alternate ranks, depending on the database under analysis.
translated by 谷歌翻译