In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
深度学习(DL)在数字病理应用中表现出很大的潜力。诊断DL的解决方案的鲁棒性对于安全的临床部署至关重要。在这项工作中,我们通过增加数字病理学中的DL预测的不确定性估计,可以通过提高一般预测性能或通过检测错误预测性来导致临床应用的价值增加。我们将模型 - 集成方法(MC辍学和深度集成)的有效性与模型 - 不可知方法(测试时间增强,TTA)进行比较。此外,比较了四个不确定性度量。我们的实验专注于两个域改变情景:转移到不同的医疗中心和癌症的不足亚型。我们的结果表明,不确定性估计可以增加一些可靠性并降低对分类阈值选择的敏感性。虽然高级指标和深度集合在我们的比较中表现最佳,但更简单的度量和TTA的附加值很小。重要的是,所有评估的不确定度估计方法的益处通过域移位减少。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive uncertainty. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous largescale empirical comparison of these methods under dataset shift. We present a largescale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
translated by 谷歌翻译
深度神经网络具有令人印象深刻的性能,但是他们无法可靠地估计其预测信心,从而限制了其在高风险领域中的适用性。我们表明,应用多标签的一VS损失揭示了分类的歧义并降低了模型的过度自信。引入的Slova(单标签One-Vs-All)模型重新定义了单个标签情况的典型单VS-ALL预测概率,其中只有一个类是正确的答案。仅当单个类具有很高的概率并且其他概率可忽略不计时,提议的分类器才有信心。与典型的SoftMax函数不同,如果所有其他类的概率都很小,Slova自然会检测到分布的样本。该模型还通过指数校准进行了微调,这使我们能够与模型精度准确地对齐置信分数。我们在三个任务上验证我们的方法。首先,我们证明了斯洛伐克与最先进的分布校准具有竞争力。其次,在数据集偏移下,斯洛伐克的性能很强。最后,我们的方法在检测到分布样品的检测方面表现出色。因此,斯洛伐克是一种工具,可以在需要不确定性建模的各种应用中使用。
translated by 谷歌翻译
生物关键是一种信号,可以从人体中连续测量,例如呼吸声,心脏活动(ECG),脑波(EEG)等,基于该信号,机器学习模型已经为自动疾病的非常有前途的性能开发检测和健康状态监测。但是,DataSet Shift,即,推理的数据分布因训练的分布而异,对于真实的基于生物信号的应用程序并不罕见。为了提高稳健性,具有不确定性资格的概率模型适于捕获预测的可靠性。然而,评估估计不确定性的质量仍然是一个挑战。在这项工作中,我们提出了一个框架来评估估计不确定性在捕获不同类型的生物数据集转换时估计的不确定性的能力。特别是,我们使用基于呼吸声和心电图信号的三个分类任务,以基准五个代表性的不确定性资格方法。广泛的实验表明,尽管集合和贝叶斯模型可以在数据集移位下提供相对更好的不确定性估计,但所有测试模型都无法满足可靠的预测和模型校准中的承诺。我们的工作为任何新开发的生物宣布分类器进行了全面评估,为全面评估铺平了道路。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
人工智能(AI)辅助方法在风险领域(例如疾病诊断)受到了很多关注。与疾病类型的分类不同,将医学图像归类为良性或恶性肿瘤是一项精细的任务。但是,大多数研究仅着重于提高诊断准确性,而忽略了模型可靠性的评估,从而限制了其临床应用。对于临床实践,校准对过度参数化的模型和固有的噪声极为明显地提出了低数据表格的主要挑战。特别是,我们发现建模与数据相关的不确定性更有利于置信度校准。与测试时间增强(TTA)相比,我们通过混合数据增强策略提出了一个修改后的自举损失(BS损耗)功能,可以更好地校准预测性不确定性并捕获数据分布转换而无需额外推断时间。我们的实验表明,与标准数据增强,深度集合和MC辍学相比,混合(BSM)模型的BS损失(BSM)模型可以将预期校准误差(ECE)减半。在BSM模型下,不确定性与相似性之间的相关性高达-0.4428。此外,BSM模型能够感知室外数据的语义距离,这表明在现实世界中的临床实践中潜力很高。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
我们表明,著名的混音的有效性[Zhang等,2018],如果而不是将其用作唯一的学习目标,就可以进一步改善它,而是将其用作标准跨侧面损失的附加规则器。这种简单的变化不仅提供了太大的准确性,而且在大多数情况下,在各种形式的协变量转移和分布外检测实验下,在大多数情况下,混合量的预测不确定性估计质量都显着提高了。实际上,我们观察到混合物在检测出分布样本时可能会产生大量退化的性能,因为我们在经验上表现出来,因为它倾向于学习在整个过程中表现出高渗透率的模型。很难区分分布样本与近分离样本。为了显示我们的方法的功效(RegMixup),我们在视觉数据集(Imagenet&Cifar-10/100)上提供了详尽的分析和实验,并将其与最新方法进行比较,以进行可靠的不确定性估计。
translated by 谷歌翻译
分配转移或培训数据和部署数据之间的不匹配是在高风险工业应用中使用机器学习的重要障碍,例如自动驾驶和医学。这需要能够评估ML模型的推广以及其不确定性估计的质量。标准ML基线数据集不允许评估这些属性,因为培训,验证和测试数据通常相同分布。最近,已经出现了一系列专用基准测试,其中包括分布匹配和转移的数据。在这些基准测试中,数据集在任务的多样性以及其功能的数据模式方面脱颖而出。虽然大多数基准测试由2D图像分类任务主导,但Shifts包含表格天气预测,机器翻译和车辆运动预测任务。这使得可以评估模型的鲁棒性属性,并可以得出多种工业规模的任务以及通用或直接适用的特定任务结论。在本文中,我们扩展了偏移数据集,其中两个数据集来自具有高社会重要性的工业高风险应用程序。具体而言,我们考虑了3D磁共振脑图像中白质多发性硬化病变的分割任务以及海洋货物容器中功耗的估计。两项任务均具有无处不在的分配变化和由于错误成本而构成严格的安全要求。这些新数据集将使研究人员能够进一步探索新情况下的强大概括和不确定性估计。在这项工作中,我们提供了两个任务的数据集和基线结果的描述。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
动机:在超声引导活检过程中检测前列腺癌是具有挑战性的。癌症的高度异质外观,超声伪像的存在和噪声都导致了这些困难。高频超声成像的最新进展 - 微拆卸 - 在高分辨率下大大提高了组织成像的能力。我们的目的是研究专门针对微型启动引导的前列腺癌活检的强大深度学习模型的发展。对于临床采用的模型,一个关键的挑战是设计一种可以确定癌症的解决方案,同时从粗略的组织病理学测量中学习引入弱标签的活检样品。方法:我们使用了从194例接受了前列腺活检的患者中获得的微型图像的数据集。我们使用共同教学范式来训练一个深层模型,以处理标签中的噪声,以及一种证据深度学习方法进行不确定性估计。我们使用准确性与信心的临床相关指标评估了模型的性能。结果:我们的模型实现了对预测不确定性的良好估计,而面积为88 $ \%$。联合结合中的共同教学和证据深度学习的使用比单独单独的不确定性估计明显更好。在不确定性估计中,我们还提供了与最先进的比较。
translated by 谷歌翻译
尽管对安全机器学习的重要性,但神经网络的不确定性量化远未解决。估计神经不确定性的最先进方法通常是混合的,将参数模型与显式或隐式(基于辍学的)合并结合。我们采取另一种途径,提出一种新颖的回归任务的不确定量化方法,纯粹是非参数的。从技术上讲,它通过基于辍学的子网分布来捕获梯级不确定性。这是通过一个新目标来实现的,这使得标签分布与模型分布之间的Wasserstein距离最小化。广泛的经验分析表明,在生产更准确和稳定的不确定度估计方面,Wasserstein丢失在香草测试数据以及在分类转移的情况下表现出最先进的方法。
translated by 谷歌翻译
Single-cell reference atlases are large-scale, cell-level maps that capture cellular heterogeneity within an organ using single cell genomics. Given their size and cellular diversity, these atlases serve as high-quality training data for the transfer of cell type labels to new datasets. Such label transfer, however, must be robust to domain shifts in gene expression due to measurement technique, lab specifics and more general batch effects. This requires methods that provide uncertainty estimates on the cell type predictions to ensure correct interpretation. Here, for the first time, we introduce uncertainty quantification methods for cell type classification on single-cell reference atlases. We benchmark four model classes and show that currently used models lack calibration, robustness, and actionable uncertainty scores. Furthermore, we demonstrate how models that quantify uncertainty are better suited to detect unseen cell types in the setting of atlas-level cell type transfer.
translated by 谷歌翻译
数据质量的系统量化对于一致的模型性能至关重要。先前的工作集中在分发数据上。取而代之的是,我们解决了一个研究了一个研究的且同样重要的问题,即表征不协调的区域(ID)数据,这可能是由特征空间异质性引起的。为此,我们提出了使用数据套件的范式转移:一个以数据为中心的AI框架来识别这些区域,而与特定于任务的模型无关。数据套件利用Copula建模,表示学习和共形预测,以基于一组培训实例来构建功能置信区间估计器。这些估计器可用于评估有关培训集的测试实例的一致性,以回答两个实际有用的问题:(1)通过培训培训实例培训的模型可以可靠地预测哪些测试实例? (2)我们可以确定功能空间的不协调区域,以便数据所有者了解数据的局限性还是指导未来数据收集?我们从经验上验证了数据套件的性能和覆盖范围保证,并在跨站点的医疗数据,有偏见的数据以及具有概念漂移的数据上证明,数据套件最能确定下游模型可能是可靠的ID区域(与所述模型无关)。我们还说明了这些确定的区域如何为数据集提供见解并突出其局限性。
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
美国宇航局的全球生态系统动力学调查(GEDI)是一个关键的气候使命,其目标是推进我们对森林在全球碳循环中的作用的理解。虽然GEDI是第一个基于空间的激光器,明确优化,以测量地上生物质的垂直森林结构预测,这对广泛的观测和环境条件的大量波形数据的准确解释是具有挑战性的。在这里,我们提出了一种新颖的监督机器学习方法来解释GEDI波形和全球标注冠层顶部高度。我们提出了一种基于深度卷积神经网络(CNN)集合的概率深度学习方法,以避免未知效果的显式建模,例如大气噪声。该模型学会提取概括地理区域的强大特征,此外,产生可靠的预测性不确定性估计。最终,我们模型产生的全球顶棚顶部高度估计估计的预期RMSE为2.7米,低偏差。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译