分列已被利用作为用于最小化能量消耗的车辆方法。在本文中,我们提出了一个限制驱动的最佳控制框架,从而产生了在开放式运输系统中运行的连接和自动车辆的紧急排行行为。我们的方法将最近的洞察于约束驱动的最佳控制与高速公路设置中车辆之间的物理空气动力学相互作用相结合。结果是一系列描述,当排中是适当的策略时,以及产生紧急排行行为的描述性最佳控制法。最后,我们在模拟中展示了这些属性。
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
当我们转向越来越复杂的网络物理系统(CPS)时,需要新方法来实时计划有效的状态轨迹。在本文中,我们提出了一种方法来显着降低对一类CPS解决最佳控制问题的复杂性。我们利用差分平稳度的性质来简化Euler-拉格朗日方程,这简化消除了一般情况下出现的数值不稳定性。我们还提出了一种明确的微分方程,描述了最佳状态轨迹的演变,我们扩展了我们的结果,以考虑无约束和受限制的情况。此外,我们通过在具有障碍物的环境中生成双积分代理的最佳轨迹来证明我们的方法的性能。在仿真中,与现有的基于焊接的最佳控制库相比,我们的方法显示了30%的成本降低,并且计算速度提高了几乎3倍。
translated by 谷歌翻译
Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions-expressed as control barrier functionsto be unified with performance objectives-expressed as control Lyapunov functions-in the context of real-time optimizationbased controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds.
translated by 谷歌翻译
As robotic systems continue to address emerging issues in areas such as logistics, mobility, manufacturing, and disaster response, it is increasingly important to rapidly generate safe and energy-efficient trajectories. In this article, we present a new approach to plan energy-optimal trajectories through cluttered environments containing polygonal obstacles. In particular, we develop a method to quickly generate optimal trajectories for a double-integrator system, and we show that optimal path planning reduces to an integer program. To find an efficient solution, we present a distance-informed prefix search to efficiently generate optimal trajectories for a large class of environments. We demonstrate that our approach, while matching the performance of RRT* and Probabilistic Road Maps in terms of path length, outperforms both in terms of energy cost and computational time by up to an order of magnitude. We also demonstrate that our approach yields implementable trajectories in an experiment with a Crazyflie quadrotor.
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
本文表明,在某些情况下,由于使用屏障功能而产生的安全性覆盖不必要地受到限制。特别是,我们检查了固定翼碰撞的情况,并表明当使用屏障功能时,在某些情况下,两架固定翼飞机可能比根本没有屏障功能更接近碰撞。此外,我们构建了屏障功能将系统标记为不安全的情况,即使车辆开始任意分开。换句话说,屏障功能可确保安全,但具有不必要的性能成本。因此,我们引入了无模型的屏障功能,该功能采用数据驱动方法来创建屏障功能。我们证明了在两架固定翼飞机的碰撞避免模拟中,无模型屏障功能的有效性。
translated by 谷歌翻译
通过改善安全性,效率和移动性,自动车辆(AVS)的快速发展持有运输系统的巨大潜力。然而,通过AVS被采用的这些影响的进展尚不清楚。众多技术挑战是出于分析自治的部分采用:部分控制和观察,多车辆互动以及现实世界网络代表的纯粹场景的目标。本文研究了近期AV影响,研究了深度加强学习(RL)在低AV采用政权中克服了这些挑战的适用性。提出了一个模块化学习框架,它利用深rl来解决复杂的交通动态。模块组成用于捕获常见的交通现象(停止和转运交通拥堵,车道更改,交叉点)。在系统级速度方面,发现了学习的控制法则改善人类驾驶绩效,高达57%,只有4-7%的AVS。此外,在单线交通中,发现只有局部观察的小型神经网络控制规律消除了停止和转移的流量 - 超过所有已知的基于模型的控制器,以实现近乎最佳性能 - 并概括为OUT-分销交通密度。
translated by 谷歌翻译
具有安全行为的赋予非线性系统在现代控制中越来越重要。对于必须在动态变化的环境中安全运行的现实生活控制系统,此任务尤其具有挑战性。本文通过建立环境控制障碍功能(ECBFS)的概念,在动态环境中开发了一种安全关键控制框架。即使在输入延迟存在下,该框架也能够保证安全性,通过占系统延迟响应期间环境的演变。潜在的控制合成依赖于预测系统的未来状态和延迟间隔通过延迟间隔,具有稳健的安全保证预测误差。通过简单的自适应巡航控制问题和更复杂的机器人应用在SEGWAY平台上证明了所提出的方法的功效。
translated by 谷歌翻译
平衡安全性和性能是现代控制系统设计中的主要挑战之一。此外,至关重要的是,在不诱导不必要的保守性降低绩效的情况下,确保安全至关重要。在这项工作中,我们提出了一种通过控制屏障功能(CBF)来进行安全关键控制合成的建设性方法。通过通过CBF过滤手工设计的控制器,我们能够达到性能行为,同时提供严格的安全保证。面对干扰,通过投入到国家安全的概念(ISSF)同时实现了稳健的安全性和性能。我们通过与倒置的示例同时开发CBF设计方法来采用教程方法,从而使设计过程混凝土中的挑战和敏感性。为了确定拟议方法的能力,我们考虑通过CBFS以无需拖车的8级卡车的形式来考虑通过CBF的CBF进行安全至关重要的设计。通过实验,我们看到了卡车驱动系统中未建模的干扰对CBF提供的安全保证的影响。我们表征了这些干扰并使用ISSF,生产出可靠的控制器,该控制器可以在不承认性能的情况下实现安全性。我们在模拟中评估了我们的设计,并且是在实验中首次在汽车系统上评估我们的设计。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.
translated by 谷歌翻译
本文介绍了可怜的高阶控制屏障功能(CBF),即结束于最终的可训练以及学习系统。CBFS通常是过于保守的,同时保证安全。在这里,我们通过使用环境依赖性软化它们的定义来解决它们的保守性,而不会损失安全保证,并将其嵌入到可分辨率的二次方案中。这些新颖的安全层称为巴里斯网,可以与任何基于神经网络的控制器结合使用,并且可以通过梯度下降训练。Barriernet允许神经控制器的安全约束适应改变环境。我们在一系列控制问题上进行评估,例如2D和3D空间中的交通合并和机器人导航,并与最先进的方法相比,证明其有效性。
translated by 谷歌翻译
基于二次程序(QP)基于状态反馈控制器,其不等式约束以控制障碍(CBFS)和Lyapunov函数的限制使用类-U \ Mathcal {K k} $函数其值的值,对其值的函数,对其值的参数敏感这些类 - $ \ MATHCAL {K} $ functions。但是,有效CBF的构建并不直接,对于QP的任意选择参数,系统轨迹可能会进入QP最终变得不可行的状态,或者可能无法实现所需的性能。在这项工作中,我们将控制合成问题作为差异策略提出,其参数在高级别的时间范围内被优化,从而导致双层优化常规。在不了解一组可行参数的情况下,我们开发了一种递归可行性引导的梯度下降方法来更新QP的参数,以便新解决方案至少和以前的解决方案的性能至少执行。通过将动力学系统视为有向图,随着时间的推移,这项工作提出了一种新颖的方式,可以通过(1)使用其解决方案的梯度来优化QP控制器在一个时间范围内对多个CBF的性能进行敏感性,从而提出了一种新的方式。分析,以及(2)将这些和系统动力学梯度进行反向传播,以更新参数,同时保持QPS的可行性。
translated by 谷歌翻译
无线技术的最新进步使连接的自动驾驶汽车(CAV)能够通过车辆到车辆(V2V)通信收集有关其环境的信息。在这项工作中,我们为CAVS设计了基于信息共享的多代理增援学习(MARL)框架,以在做出决定以提高交通效率和安全性时利用额外的信息。我们提出的安全参与者批评算法有两种新技术:截断的Q功能和安全动作映射。截断的Q功能利用了来自相邻骑士的共享信息,以使Q-功能的联合状态和动作空间在我们的算法中不会在大型CAV系统中生长。我们证明了截短Q和全局Q函数之间近似误差的结合。安全的操作映射为基于控制屏障功能的培训和执行提供了可证明的安全保证。我们使用CARLA模拟器进行实验,我们表明我们的方法可以在不同的CAV比和不同的交通密度下的平均速度和舒适性方面提高CAV系统的效率。我们还表明,我们的方法避免执行不安全的动作,并始终保持与其他车辆的安全距离。我们构建了一个障碍物的场景,以表明共同的愿景可以帮助骑士早些时候观察障碍,并采取行动避免交通拥堵。
translated by 谷歌翻译
基于控制屏障功能(CBF)的安全过滤器已成为自治系统安全至关重要控制的实用工具。这些方法通过价值函数编码安全性,并通过对该值函数的时间导数施加限制来执行安全。但是,在存在输入限制的情况下合成并非过于保守的有效CBF是一个臭名昭著的挑战。在这项工作中,我们建议使用正式验证方法提炼候选CBF,以获得有效的CBF。特别是,我们使用基于动态编程(DP)的可及性分析更新专家合成或备份CBF。我们的框架RefineCBF保证,在每次DP迭代中,获得的CBF至少与先前的迭代一样安全,并收集到有效的CBF。因此,RefineCBF可用于机器人系统。我们证明了我们在模拟中使用各种CBF合成技术来增强安全性和/或降低一系列非线性控制型系统系统的保守性的实用性。
translated by 谷歌翻译
在过去的几十年中,车辆的升级和更新加速了。出于对环境友好和情报的需求,电动汽车(EV)以及连接和自动化的车辆(CAVS)已成为运输系统的新组成部分。本文开发了一个增强学习框架,以在信号交叉点上对由骑士和人类驱动车辆(HDV)组成的电力排实施自适应控制。首先,提出了马尔可夫决策过程(MDP)模型来描述混合排的决策过程。新颖的状态表示和奖励功能是为模型设计的,以考虑整个排的行为。其次,为了处理延迟的奖励,提出了增强的随机搜索(ARS)算法。代理商所学到的控制政策可以指导骑士的纵向运动,后者是排的领导者。最后,在模拟套件相扑中进行了一系列模拟。与几种最先进的(SOTA)强化学习方法相比,提出的方法可以获得更高的奖励。同时,仿真结果证明了延迟奖励的有效性,延迟奖励的有效性均优于分布式奖励机制}与正常的汽车跟随行为相比,灵敏度分析表明,可以将能量保存到不同的扩展(39.27%-82.51%))通过调整优化目标的相对重要性。在没有牺牲行进延迟的前提下,建议的控制方法可以节省多达53.64%的电能。
translated by 谷歌翻译
我们考虑在微观级别的坡道计量,但受车辆安全限制的约束。交通网络由带有多个在越野和外坡道的环路抽象。车辆到达坡道的到达时间及其目的地外坡道是由外源随机过程建模的。一旦车辆从坡道上释放出来,如果没有另一辆车阻塞,它就会加速自由流速。一旦它靠近另一辆车,便会采用安全的行为。车辆到达目的地外坡道后,车辆将退出交通网络。我们设计流量响应的坡道计量策略,以最大程度地提高网络的饱和区域。策略的饱和区域定义为一组需求,即到达率和路由矩阵,所有坡道的队列长度都在预期中保持限制。提出的坡道计量策略是在同步循环下运行的,在此期间,坡道在周期开始时不会释放更多的车辆长度。我们提供三个策略,分别在周期结束时分别暂停每个坡度(i)暂停时间间隔,或(ii)在周期内调节释放率,或(iii)采用保守的安全性在周期中释放的标准。但是,所有政策都不需要有关需求的信息。这些策略的饱和区域的特征是研究诱导的马尔可夫链的随机稳定性,当所有坡道的合并速度等于自由流速时,被证明是最大的。提供模拟以说明政策的性能。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译