Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
translated by 谷歌翻译
命名实体识别是一项信息提取任务,可作为其他自然语言处理任务的预处理步骤,例如机器翻译,信息检索和问题答案。命名实体识别能够识别专有名称以及开放域文本中的时间和数字表达式。对于诸如阿拉伯语,阿姆哈拉语和希伯来语之类的闪族语言,由于这些语言的结构严重变化,指定的实体识别任务更具挑战性。在本文中,我们提出了一个基于双向长期记忆的Amharic命名实体识别系统,并带有条件随机字段层。我们注释了一种新的Amharic命名实体识别数据集(8,070个句子,具有182,691个令牌),并将合成少数群体过度采样技术应用于我们的数据集,以减轻不平衡的分类问题。我们命名的实体识别系统的F_1得分为93%,这是Amharic命名实体识别的新最新结果。
translated by 谷歌翻译
虽然罕见疾病的特征在于患病率低,但大约3亿人受到罕见疾病的影响。对这些条件的早期和准确诊断是一般从业者的主要挑战,没有足够的知识来识别它们。除此之外,罕见疾病通常会显示各种表现形式,这可能会使诊断更加困难。延迟的诊断可能会对患者的生命产生负面影响。因此,迫切需要增加关于稀有疾病的科学和医学知识。自然语言处理(NLP)和深度学习可以帮助提取有关罕见疾病的相关信息,以促进其诊断和治疗。本文探讨了几种深度学习技术,例如双向长期内存(BILSTM)网络或基于来自变压器(BERT)的双向编码器表示的深层语境化词表示,以识别罕见疾病及其临床表现(症状和症状) Raredis语料库。该毒品含有超过5,000名罕见疾病和近6,000个临床表现。 Biobert,基于BERT和培训的生物医学Corpora培训的域特定语言表示,获得了最佳结果。特别是,该模型获得罕见疾病的F1分数为85.2%,表现优于所有其他模型。
translated by 谷歌翻译
The rapid advancement of AI technology has made text generation tools like GPT-3 and ChatGPT increasingly accessible, scalable, and effective. This can pose serious threat to the credibility of various forms of media if these technologies are used for plagiarism, including scientific literature and news sources. Despite the development of automated methods for paraphrase identification, detecting this type of plagiarism remains a challenge due to the disparate nature of the datasets on which these methods are trained. In this study, we review traditional and current approaches to paraphrase identification and propose a refined typology of paraphrases. We also investigate how this typology is represented in popular datasets and how under-representation of certain types of paraphrases impacts detection capabilities. Finally, we outline new directions for future research and datasets in the pursuit of more effective paraphrase detection using AI.
translated by 谷歌翻译
确保适当的标点符号和字母外壳是朝向应用复杂的自然语言处理算法的关键预处理步骤。这对于缺少标点符号和壳体的文本源,例如自动语音识别系统的原始输出。此外,简短的短信和微博的平台提供不可靠且经常错误的标点符号和套管。本调查概述了历史和最先进的技术,用于恢复标点符号和纠正单词套管。此外,突出了当前的挑战和研究方向。
translated by 谷歌翻译
State-of-the-art named entity recognition systems rely heavily on hand-crafted features and domain-specific knowledge in order to learn effectively from the small, supervised training corpora that are available. In this paper, we introduce two new neural architectures-one based on bidirectional LSTMs and conditional random fields, and the other that constructs and labels segments using a transition-based approach inspired by shift-reduce parsers. Our models rely on two sources of information about words: character-based word representations learned from the supervised corpus and unsupervised word representations learned from unannotated corpora. Our models obtain state-of-the-art performance in NER in four languages without resorting to any language-specific knowledge or resources such as gazetteers. 1
translated by 谷歌翻译
Intent classification and slot filling are two core tasks in natural language understanding (NLU). The interaction nature of the two tasks makes the joint models often outperform the single designs. One of the promising solutions, called BERT (Bidirectional Encoder Representations from Transformers), achieves the joint optimization of the two tasks. BERT adopts the wordpiece to tokenize each input token into multiple sub-tokens, which causes a mismatch between the tokens and the labels lengths. Previous methods utilize the hidden states corresponding to the first sub-token as input to the classifier, which limits performance improvement since some hidden semantic informations is discarded in the fine-tune process. To address this issue, we propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby generating the context features that contribute to slot filling. Specifically, we encode the hidden states corresponding to multiple sub-tokens into a context vector via the attention mechanism. Then, we feed each context vector into the slot filling encoder, which preserves the integrity of the sentence. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on two public benchmark datasets. The F1 score of the slot filling in particular has been improved from 96.1 to 98.2 (2.1% absolute) on the ATIS dataset.
translated by 谷歌翻译
自动言论(POS)标记是许多自然语言处理(NLP)任务的预处理步骤,例如名称实体识别(NER),语音处理,信息提取,单词sense sisse disampigation和Machine Translation。它已经在英语和欧洲语言方面取得了令人鼓舞的结果,但是使用印度语言,尤其是在Odia语言中,由于缺乏支持工具,资源和语言形态丰富性,因此尚未得到很好的探索。不幸的是,我们无法为ODIA找到一个开源POS标记,并且仅尝试为ODIA语言开发POS标记器的尝试。这项研究工作的主要贡献是介绍有条件的随机场(CRF)和基于深度学习的方法(CNN和双向长期短期记忆)来开发ODIA的语音部分。我们使用了一个公开访问的语料库,并用印度标准局(BIS)标签设定了数据集。但是,全球的大多数语言都使用了带有通用依赖项(UD)标签集注释的数据集。因此,要保持统一性,odia数据集应使用相同的标签集。因此,我们已经构建了一个从BIS标签集到UD标签集的简单映射。我们对CRF模型进行了各种特征集输入,观察到构造特征集的影响。基于深度学习的模型包括BI-LSTM网络,CNN网络,CRF层,角色序列信息和预训练的单词向量。通过使用卷积神经网络(CNN)和BI-LSTM网络提取角色序列信息。实施了神经序列标记模型的六种不同组合,并研究了其性能指标。已经观察到具有字符序列特征和预训练的单词矢量的BI-LSTM模型取得了显着的最新结果。
translated by 谷歌翻译
随着未来以数据为中心的决策,对数据库的无缝访问至关重要。关于创建有效的文本到SQL(Text2SQL)模型以访问数据库的数据有广泛的研究。使用自然语言是可以通过有效访问数据库(尤其是对于非技术用户)来弥合数据和结果之间差距的最佳接口之一。它将打开门,并在精通技术技能或不太熟练的查询语言的用户中引起极大的兴趣。即使提出或研究了许多基于深度学习的算法,在现实工作场景中使用自然语言来解决数据查询问题仍然非常具有挑战性。原因是在不同的研究中使用不同的数据集,这带来了其局限性和假设。同时,我们确实缺乏对这些提议的模型及其对其训练的特定数据集的局限性的彻底理解。在本文中,我们试图介绍过去几年研究的24种神经网络模型的整体概述,包括其涉及卷积神经网络,经常性神经网络,指针网络,强化学习,生成模型等的架构。我们还概述11个数据集,这些数据集被广泛用于训练Text2SQL技术的模型。我们还讨论了无缝数据查询中文本2SQL技术的未来应用可能性。
translated by 谷歌翻译
近年来,已经出现了许多巨魔帐户来操纵社交媒体的意见。对于社交网络平台而言,检测和消除巨魔是一个关键问题,因为企业,滥用者和民族国家赞助的巨魔农场使用虚假和自动化的帐户。 NLP技术用于从社交网络文本中提取数据,例如Twitter推文。在许多文本处理应用程序中,诸如BERT之类的单词嵌入表示方法的执行效果要好于先前的NLP技术,从而为各种任务提供了新颖的突破,以精确理解和分类社交网络工作信息。本文实施并比较了九个基于深度学习的巨魔推文检测体系结构,每个bert,elmo和手套词嵌入模型的三个模型。精度,召回,F1分数,AUC和分类精度用于评估每个体系结构。从实验结果中,大多数使用BERT模型的架构改进了巨魔推文检测。具有GRU分类器的基于自定义的基于ELMO的体系结构具有检测巨魔消息的最高AUC。所提出的体系结构可以由各种基于社会的系统用于未来检测巨魔消息。
translated by 谷歌翻译
本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译
客户服务Chatbots是对话系统,旨在为客户提供有关不同公司提供的产品/服务的信息。特别地,意图识别是自然语言低估Chatbot系统的能力的核心组件之一。在聊天训练识别的不同意图中,他们有一组是通用的任何客户服务Chatbot。普遍意图可以包括称呼,将对话交给人类代理人,告别。识别这些普遍意图的系统将非常有助于优化特定客户服务聊天训练过程。我们提出了一个普遍意图识别系统的发展,该系统受过培训,以识别28个不同的聊天跳闸中常见的11个意图组。拟议的系统考虑了最先进的单词嵌入模型,例如Word2VEC和BERT,基于卷积和经常性神经网络的深层分类器。所提出的模型能够区分这些普遍意图,均衡精度高达80.4 \%。此外,所提出的系统同样准确地识别短期和长文本请求中表达的意图。同时,错误分类错误通常发生在具有非常相似的语义领域,例如告别和正面评论之间。建议的系统将非常有帮助优化客户服务Chatbot的培训过程,因为我们的系统已经可用并检测到一些意图。与此同时,拟议的方法将是一个合适的基础模型,通过应用转移学习策略培训更具体的聊天措施。
translated by 谷歌翻译
从非结构化网络文本中提取网络安全实体,例如攻击者和漏洞是安全分析的重要组成部分。但是,智能数据的稀疏性是由较高的频率变化产生的,并且网络安全实体名称的随机性使得当前方法在提取与安全相关的概念和实体方面很难表现良好。为此,我们提出了一种语义增强方法,该方法结合了不同的语言特征,以丰富输入令牌的表示,以通过非结构化文本检测和对网络安全名称进行分类。特别是,我们编码和汇总每个输入令牌的组成特征,形态特征和语音特征的一部分,以提高方法的鲁棒性。不仅如此,令牌从其在网络安全域中最相似的k单词获得了增强的语义信息,在该语料库中,将一个细心的模块借给了一个单词的差异,并从基于大规模的一般田野语料库的上下文线索中权衡了差异。我们已经在网络安全数据集DNRTI和MalwaretextDB上进行了实验,结果证明了该方法的有效性。
translated by 谷歌翻译
本教程展示了工作流程,将文本数据纳入精算分类和回归任务。主要重点是采用基于变压器模型的方法。平均长度为400个单词的车祸描述的数据集,英语和德语可用,以及具有简短财产保险索赔的数据集用来证明这些技术。案例研究应对与多语言环境和长输入序列有关的挑战。他们还展示了解释模型输出,评估和改善模型性能的方法,通过将模型调整到应用程序领域或特定预测任务。最后,该教程提供了在没有或仅有少数标记数据的情况下处理分类任务的实用方法。通过使用最少的预处理和微调的现成自然语言处理(NLP)模型的语言理解技能(NLP)模型实现的结果清楚地证明了用于实际应用的转移学习能力。
translated by 谷歌翻译
现代机器学习算法能够提供非常精确的点预测的;然而,问题仍然是其统计的可靠性。不同于传统的机器学习方法,适形的预测算法返回置信集(即,集值的预测),其对应于给定的显着水平。此外,这些置信集在这个意义上,它们保证有限样本控制1型误差的概率,从而允许医生选择在可接受的误差率有效。在本文中,我们提出了感应式保形预测(ICP)算法用于文本充填和部分的语音(POS)预测自然语言数据的任务。我们从变压器(BERT)和词性标注和文字充填新形预测增强BERT算法双向长短期记忆(BiLSTM)算法构建新的适形预测增强的双向编码表示。我们分析的算法采用Brown语料库,其中包含超过57000句模拟性能。我们的研究结果表明,ICP算法能够产生有效的集值预测是小到足以适用于现实世界的应用。我们也为我们提出了集值预测如何提高机器生成的音频转录一个真实数据的例子。
translated by 谷歌翻译
In this modern era of technology with e-commerce developing at a rapid pace, it is very important to understand customer requirements and details from a business conversation. It is very crucial for customer retention and satisfaction. Extracting key insights from these conversations is very important when it comes to developing their product or solving their issue. Understanding customer feedback, responses, and important details of the product are essential and it would be done using Named entity recognition (NER). For extracting the entities we would be converting the conversations to text using the optimal speech-to-text model. The model would be a two-stage network in which the conversation is converted to text. Then, suitable entities are extracted using robust techniques using a NER BERT transformer model. This will aid in the enrichment of customer experience when there is an issue which is faced by them. If a customer faces a problem he will call and register his complaint. The model will then extract the key features from this conversation which will be necessary to look into the problem. These features would include details like the order number, and the exact problem. All these would be extracted directly from the conversation and this would reduce the effort of going through the conversation again.
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
排名模型是信息检索系统的主要组成部分。排名的几种方法是基于传统的机器学习算法,使用一组手工制作的功能。最近,研究人员在信息检索中利用了深度学习模型。这些模型的培训结束于结束,以提取来自RAW数据的特征来排序任务,因此它们克服了手工制作功能的局限性。已经提出了各种深度学习模型,每个模型都呈现了一组神经网络组件,以提取用于排名的特征。在本文中,我们在不同方面比较文献中提出的模型,以了解每个模型的主要贡献和限制。在我们对文献的讨论中,我们分析了有前途的神经元件,并提出了未来的研究方向。我们还显示文档检索和其他检索任务之间的类比,其中排名的项目是结构化文档,答案,图像和视频。
translated by 谷歌翻译
多文件摘要(MDS)是信息聚合的有效工具,它从与主题相关文档集群生成信息和简洁的摘要。我们的调查是,首先,系统地概述了最近的基于深度学习的MDS模型。我们提出了一种新的分类学,总结神经网络的设计策略,并进行全面的最先进的概要。我们突出了在现有文献中很少讨论的各种客观函数之间的差异。最后,我们提出了与这个新的和令人兴奋的领域有关的几个方向。
translated by 谷歌翻译
建模法检索和检索作为预测问题最近被出现为法律智能的主要方法。专注于法律文章检索任务,我们展示了一个名为Lamberta的深度学习框架,该框架被设计用于民法代码,并在意大利民法典上专门培训。为了我们的知识,这是第一项研究提出了基于伯特(来自变压器的双向编码器表示)学习框架的意大利法律制度对意大利法律制度的高级法律文章预测的研究,最近引起了深度学习方法的增加,呈现出色的有效性在几种自然语言处理和学习任务中。我们通过微调意大利文章或其部分的意大利预先训练的意大利预先训练的伯爵来定义Lamberta模型,因为法律文章作为分类任务检索。我们Lamberta框架的一个关键方面是我们构思它以解决极端的分类方案,其特征在于课程数量大,少量学习问题,以及意大利法律预测任务的缺乏测试查询基准。为了解决这些问题,我们为法律文章的无监督标签定义了不同的方法,原则上可以应用于任何法律制度。我们提供了深入了解我们Lamberta模型的解释性和可解释性,并且我们对单一标签以及多标签评估任务进行了广泛的查询模板实验分析。经验证据表明了Lamberta的有效性,以及对广泛使用的深度学习文本分类器和一些构思的几次学习者来说,其优越性是对属性感知预测任务的优势。
translated by 谷歌翻译