激活函数是元素的数学函数,在深神经网络(DNN)中起着至关重要的作用。已经提出了许多新颖和复杂的激活功能来提高DNN的准确性,但在训练过程中还可以通过反向传播消耗大量记忆。在这项研究中,我们提出了嵌套的正向自动分化(正向AD),专门针对用于记忆效率的DNN训练的元素激活函数。我们在两个广泛使用的深度学习框架(Tensorflow和Pytorch)中部署了嵌套的AD,分别支持静态和动态计算图。我们的评估表明,在相同的记忆降低率下,嵌套的前AD嵌套将记忆足迹降低到1.97倍,比基线模型降低了20%。
translated by 谷歌翻译
深度学习的快速进步正在导致一系列快速变化的模型,对计算的需求急剧增长。但是,随着框架将性能优化专门针对流行网络的模式,它们隐含地限制了推动研究进展的新颖和多样化的模型。我们通过定义灵活和用户可定制的管道来优化基于数据运动最小化的任意深神经网络的培训来赋予深度学习研究人员的能力。管道始于Pytorch或ONNX中的标准网络,并通过逐步降低转换计算。我们定义了四个级别的通用转换级别,从局部操作员优化到全球数据运动减少。这些在以数据为中心的图形中间表示上运行,该表示在各个级别的抽象级别表达计算和数据移动,包括扩展基本运算符,例如其基础计算的卷积。设计的核心是管道的互动性和内省性质。每个部分都可以通过Python API扩展,并且可以使用GUI进行交互调整。我们在十个不同的网络上展示了竞争性能或加速性,交互式优化发现了高效网络中的新机会。
translated by 谷歌翻译
基于变压器的神经模型在许多AI应用中使用。培训这些模型很昂贵,因为它需要大量的GPU资源和较长的持续时间。这是具有挑战性的,因为诸如句子之类的典型数据具有可变的长度,而变压器的计算模式比卷积神经网络更为复杂。现有系统要么仅专注于模型推理,要么仅针对BERT样编码器模型进行优化。在本文中,我们提出了LightSeq2,该系统是为GPU上的一般变压器模型加速培训的系统。我们提出了一系列针对变压器模型的特定计算流量和内存访问模式量身定制的GPU优化技术。 LightSeq2支持许多模型体系结构,包括BERT(仅编码),GPT(仅解码器),变压器(编码器编码器)和视觉变压器。我们对各种模型和基准测试的实验表明,LightSeq2始终比不同GPU上的先前系统更快(1.4-3.5倍)。特别是,与大型公共机器翻译基准(WMT14英语 - 德国人)上的现有系统相比,它获得了308%的培训速度。
translated by 谷歌翻译
Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.
translated by 谷歌翻译
变形金刚是今天最重要的机器学习工作负载之一。培训是一个非常计算密集的任务,通常需要几天或几周,并且对优化变压器进行了重大关注。尽管如此,现有的实现不会有效地利用GPU。我们发现数据移动是培训时的关键瓶颈。由于Amdahl的法律和大规模改进的计算性能,培训现已成为记忆束缚。此外,现有框架使用次优数据布局。使用这些洞察力,我们提供了一个用于全局优化变压器数据移动的配方。我们将数据移动降低到22.91%,总体上实现了在训练伯特编码器层和1.19x的整个伯特的最先进框架上的1.30倍的性能改进。我们的方法更广泛地适用于优化深神经网络,并深入了解如何解决新兴的性能瓶颈。
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
Automatic differentiation (AD) is a technique for computing the derivative of a function represented by a program. This technique is considered as the de-facto standard for computing the differentiation in many machine learning and optimisation software tools. Despite the practicality of this technique, the performance of the differentiated programs, especially for functional languages and in the presence of vectors, is suboptimal. We present an AD system for a higher-order functional array-processing language. The core functional language underlying this system simultaneously supports both source-to-source forward-mode AD and global optimisations such as loop transformations. In combination, gradient computation with forward-mode AD can be as efficient as reverse mode, and the Jacobian matrices required for numerical algorithms such as Gauss-Newton and Levenberg-Marquardt can be efficiently computed.
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译
变压器模型的成功将深度学习模型量表推向了数十亿个参数。但是,由于单个GPU的内存资源有限,因此仍然缺乏选择最佳并行策略的最佳实践,因为它需要深度学习和并行计算方面的域专业知识。巨大的AI系统通过引入统一的界面来解决上述挑战,以将模型培训的顺序代码扩展到分布式环境。它支持并行训练方法,例如数据,管道,张量和序列并行性,以及与零冗余优化器集成的异质训练方法。与基线系统相比,巨大的AI可以实现大型型号的训练速度的2.76倍。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译
随着机器学习系统的计算要求以及机器学习框架的规模和复杂性的增加,基本框架创新变得具有挑战性。尽管计算需求驱动了最近的编译器,网络和硬件的进步,但通过机器学习工具对这些进步的利用却以较慢的速度发生。这部分是由于与现有框架原型制作新的计算范式有关的困难。大型框架将机器学习研究人员和从业人员作为最终用户的优先级优先,并且很少关注能够向前推动框架的系统研究人员 - 我们认为两者都是同等重要的利益相关者。我们介绍了手电筒,这是一个开源库,旨在通过优先考虑开放式,模块化,可定制的内部设备以及最新的,可用于研究的模型和培训设置,以刺激机器学习工具和系统的创新。手电筒使系统研究人员能够快速原型并尝试机器学习计算中的新思想,并且开销低,与其他流行的机器学习框架竞争并经常超过其他流行的机器学习框架。我们将手电筒视为一种工具,可以使可以使广泛使用的图书馆受益,并使机器学习和系统研究人员更加紧密地结合在一起。手电筒可从https://github.com/flashlight/flashlight获得。
translated by 谷歌翻译
训练大型神经网络(NN)模型需要广泛的记忆资源,而激活压缩训练(ACT)是减少训练记忆足迹的一种有前途的方法。本文介绍了GACT,这是一个ACT框架,旨在支持具有有限域知识的通用NN体系结构的广泛机器学习任务。通过分析ACT近似梯度的线性化版本,我们证明了GACT的收敛性,而没有有关操作员类型或模型体系结构的先验知识。为了使训练保持稳定,我们提出了一种算法,该算法通过估计运行时对梯度的影响来决定每个张量的压缩比。我们将GACT实施为Pytorch库,很容易适用于任何NN体系结构。GACT将卷积NN,变压器和图形NNS的激活记忆降低到8.1倍,从而使4.2倍至24.7倍的训练能够较大,而精度损失可忽略不计。
translated by 谷歌翻译
基础模型正在成为主要的深度学习技术。由于模型参数和训练数据集的大规模,预处理基础模型始终耗时。除了计算密集型外,培训过程还非常密集和沟通密集。这些功能使得需要应用3D并行性,该平行性整合数据并行性,管道模型并行性和张量模型并行性,以实现高训练效率。为了实现这一目标,开发了一些自定义软件框架,例如Megatron-LM和DeepSpeed。但是,当前的3D平行框架仍然符合两个问题:i)它们对模型开发人员不透明,这些开发人员需要手动修改模型以并行化培训。 ii)它们对计算,GPU存储器和网络带宽的利用不足。我们提出了Merak,这是一个自动化的3D并行性深度学习培训框架,并具有高度资源利用。 Merak会自动使用自动模型分区仪部署,该分区仪在模型的代理表示上使用图形sharding算法。 Merak还提出了非侵入性的API,用于通过最小的代码修改来扩展基础模型培训。此外,我们在Merak设计了高性能的3D平行运行时引擎。它使用多种技术来利用可用的培训资源,包括移动的关键路径管道时间表,该计划带来了更高的计算利用率,阶段感知的重新计算,可利用空闲工作者的记忆以及子额定张量的模型并行性,这些模型并联与通信和计算重叠。 64 GPU的实验显示,Merak可以加快在最新的3D平行性框架上,具有1.5、2.5、8.3和20亿的模型框架,最高可达1.42x,1.39x,1.43x和1.61 x分别。
translated by 谷歌翻译
深度神经网络(DNN)已成为移动设备上许多主要应用的核心推动因素。为实现高精度,DNN模型越来越深,数百甚至数千个操作层,导致高记忆和推理的计算要求。操作员融合(或内核/层融合)是许多最先进的DNN执行框架中的关键优化,例如Tensorflow,TVM和MNN。然而,这些框架通常根据某些模式采用融合方法,这些模式过于限制,以涵盖运营商和层连接的多样性。另一方面,基于多面体的循环融合技术,在没有运营商级信息的情况下对计算的低级视图工作,并且也可能错过潜在的融合机会。为了解决这一挑战,本文提出了一种名为DNNFusion的新颖和广泛的环路融合框架。这项工作的基本思想是在DNN的操作员视图下工作,但通过开发个人运营商及其组合的分类来扩展融合机会。此外,DNNFusion包括1)基于新的基于数学 - 性能的图形重写框架,以降低评估成本,并促进后续操作员融合,2)一种集成的融合计划,利用高级分析和精确的轻量级分析,以及3 )融合代码生成期间的附加优化。在15个DNN模型中广泛评估DNNFusion,具有各种任务,模型尺寸和图层计数。评估结果表明,DNNFusion最高达到8.8倍的融合机会,优于具有9.3倍的最先进的DNN执行框架。记忆要求减少和加速可以在移动设备上执行许多目标模型,甚至可以使它们成为实时应用程序的一部分。
translated by 谷歌翻译
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, generalpurpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor-Flow achieves for several real-world applications.
translated by 谷歌翻译
Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.
translated by 谷歌翻译
分布式数据并行训练已被广泛用于深神经网络(DNN)模型。尽管当前的深度学习(DL)框架对于图像分类模型(例如图像分类模型)的密集模型很好地扩展了,但我们发现这些DL框架对于具有高度稀疏嵌入表的稀疏模型(NLP)模型(NLP)模型(NLP)模型具有相对较低的可扩展性。大多数现有作品忽略了模型参数的稀疏性,因此遭受了重要但不必要的沟通开销。在本文中,我们提出了Ablace,这是一个有效的沟通框架,以加快稀疏模型分布式培训的通信。 Embrace引入了稀疏感知的混合通信,将AlltoAll和模型并行置于数据并行训练中,以减少高度稀疏参数的交流开销。为了有效地重叠稀疏的通信与后向前和前向计算,采用进一步设计的2D通信调度方法,该方法优化了模型计算过程,放松嵌入式的依赖性,并计划以优先级的排队来安排每个嵌入行的稀疏通信。我们已经基于Pytorch和Horovod实施了Embrace的原型,并通过四个代表性的NLP模型进行了全面的评估。实验结果表明,与最先进的分布式训练基线相比,Embrace的速度高达2.41倍。
translated by 谷歌翻译
深度神经网络(DNN)模型通常是从​​一层到另一层的依次训练的,这会导致向前,向后和更新锁定的问题,从而导致训练时间的性能差。减轻这些问题的现有并行策略提供了次优的运行时性能。在这项工作中,我们提出了一种新颖的层面分区和合并,向前和向后通过并行框架,以提供更好的训练性能。拟议工作的新颖性包括1)层面分区和合并模型,该模型可以最大程度地降低设备之间的通信开销,而不会在培训过程中没有现有策略的记忆成本; 2)向后通过和向后通过并行化和优化,以解决更新锁定问题并最大程度地减少总培训成本。对实际用例的实验评估表明,所提出的方法在训练速度方面优于最先进的方法。并在不损害非平行方法的准确性性能的情况下实现几乎线性加速。
translated by 谷歌翻译
模型大小的范围不断增加,并且持续改进性能使大型模型时代的到来的到来。在本报告中,我们通过潜入培训目标和培训方法来探讨大型模型培训如何运作。具体而言,培训目标描述了如何利用Web规模数据来开发基于自我监督的学习以及基于分布式培训的培训方法,开发出极强的大型模型,描述了如何使大型模型培训成为现实。我们将现有的培训方法总结为三个主要类别:训练并行性,节省记忆技术和模型稀疏设计。训练并行性可以根据发生的并行性维度分类为数据,管道和张量并行性。节省记忆的技术是正交的,并且与训练并行性互补。和模型稀疏设计以恒定的计算成本进一步扩大模型大小。在https://github.com/qhliu26/bm-training提供了不断更新的大型模型培训清单。
translated by 谷歌翻译