We introduce a novel framework to track multiple objects in overhead camera videos for airport checkpoint security scenarios where targets correspond to passengers and their baggage items. We propose a Self-Supervised Learning (SSL) technique to provide the model information about instance segmentation uncertainty from overhead images. Our SSL approach improves object detection by employing a test-time data augmentation and a regression-based, rotation-invariant pseudo-label refinement technique. Our pseudo-label generation method provides multiple geometrically-transformed images as inputs to a Convolutional Neural Network (CNN), regresses the augmented detections generated by the network to reduce localization errors, and then clusters them using the mean-shift algorithm. The self-supervised detector model is used in a single-camera tracking algorithm to generate temporal identifiers for the targets. Our method also incorporates a multi-view trajectory association mechanism to maintain consistent temporal identifiers as passengers travel across camera views. An evaluation of detection, tracking, and association performances on videos obtained from multiple overhead cameras in a realistic airport checkpoint environment demonstrates the effectiveness of the proposed approach. Our results show that self-supervision improves object detection accuracy by up to $42\%$ without increasing the inference time of the model. Our multi-camera association method achieves up to $89\%$ multi-object tracking accuracy with an average computation time of less than $15$ ms.
translated by 谷歌翻译
使用手动生成标签训练的卷积神经网络通常用于语义或实例分割。在精确的农业中,自动花探测方法使用监督模型和后处理技术,这些技术可能不会始终如一地表现为花朵的出现,并且数据采集条件有所不同。我们提出了一种自我监督的学习策略,以使用自动生成的伪标签来增强分割模型对不同花种物种的敏感性。我们采用数据增强和完善方法来提高模型预测的准确性。然后将增强的语义预测转换为全景伪标签,以迭代训练多任务模型。可以通过现有的后处理方法来完善自我监督的模型预测,以进一步提高其准确性。对多物种果树花数据集的评估表明,我们的方法的表现优于最先进的模型,而无需计算昂贵的后处理步骤,为花朵检测应用提供了新的基线。
translated by 谷歌翻译
水果和蔬菜的检测,分割和跟踪是精确农业的三个基本任务,实现了机器人的收获和产量估计。但是,现代算法是饥饿的数据,并非总是有可能收集足够的数据来运用最佳性能的监督方法。由于数据收集是一项昂贵且繁琐的任务,因此在农业中使用计算机视觉的能力通常是小企业无法实现的。在此背景下的先前工作之后,我们提出了一种初始弱监督的解决方案,以减少在精确农业应用程序中获得最新检测和细分所需的数据,在这里,我们在这里改进该系统并探索跟踪果实的问题果园。我们介绍了拉齐奥南部(意大利)葡萄的葡萄园案例,因为葡萄由于遮挡,颜色和一般照明条件而难以分割。当有一些可以用作源数据的初始标记数据(例如,葡萄酒葡萄数据)时,我们会考虑这种情况,但与目标数据有很大不同(例如表格葡萄数据)。为了改善目标数据的检测和分割,我们建议使用弱边界框标签训练分割算法,而对于跟踪,我们从运动算法中利用3D结构来生成来自已标记样品的新标签。最后,将两个系统组合成完整的半监督方法。与SOTA监督解决方案的比较表明,我们的方法如何能够训练以很少的标记图像和非常简单的标签来实现高性能的新型号。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
基于高质量标签的鱼类跟踪和细分的DNN很昂贵。替代无监督的方法取决于视频数据中自然发生的空间和时间变化来生成嘈杂的伪界图标签。这些伪标签用于训练多任务深神经网络。在本文中,我们提出了一个三阶段的框架,用于强大的鱼类跟踪和分割,其中第一阶段是光流模型,该模型使用帧之间的空间和时间一致性生成伪标签。在第二阶段,一个自我监督的模型会逐步完善伪标签。在第三阶段,精制标签用于训练分割网络。在培训或推理期间没有使用人类注释。进行了广泛的实验来验证我们在三个公共水下视频数据集中的方法,并证明它对视频注释和细分非常有效。我们还评估框架对不同成像条件的鲁棒性,并讨论当前实施的局限性。
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
对人类对象相互作用的理解在第一人称愿景(FPV)中至关重要。遵循相机佩戴者操纵的对象的视觉跟踪算法可以提供有效的信息,以有效地建模此类相互作用。在过去的几年中,计算机视觉社区已大大提高了各种目标对象和场景的跟踪算法的性能。尽管以前有几次尝试在FPV域中利用跟踪器,但仍缺少对最先进跟踪器的性能的有条理分析。这项研究差距提出了一个问题,即应使用当前的解决方案``现成''还是应进行更多特定领域的研究。本文旨在为此类问题提供答案。我们介绍了FPV中单个对象跟踪的首次系统研究。我们的研究广泛分析了42个算法的性能,包括通用对象跟踪器和基线FPV特定跟踪器。分析是通过关注FPV设置的不同方面,引入新的绩效指标以及与FPV特定任务有关的。这项研究是通过引入Trek-150(由150个密集注释的视频序列组成的新型基准数据集)来实现的。我们的结果表明,FPV中的对象跟踪对当前的视觉跟踪器构成了新的挑战。我们强调了导致这种行为的因素,并指出了可能的研究方向。尽管遇到了困难,但我们证明了跟踪器为需要短期对象跟踪的FPV下游任务带来好处。我们预计,随着新的和FPV特定的方法学会得到研究,通用对象跟踪将在FPV中受欢迎。
translated by 谷歌翻译
多摄像机跟踪系统在需要高质量跟踪结果的应用中获得普及,例如摩擦结账,因为单眼多物体跟踪(MOT)系统由于闭塞而在杂乱和拥挤的环境中经常失败。通过恢复部分3D信息,多个高度重叠的相机可以显着减轻问题。但是,使用不同的相机设置和背景创建高质量多摄像头跟踪数据集的成本在该域中的数据集比例限制了数据集尺度。在本文中,我们在自动注释系统的帮助下提供了五种不同环境的大型密集标记的多摄像头跟踪数据集。该系统使用重叠和校准的深度和RGB相机来构建高性能3D跟踪器,可自动生成3D跟踪结果。使用摄像机参数将3D跟踪结果投影到每个RGB摄像头视图以创建2D跟踪结果。然后,我们手动检查并更正3D跟踪结果以确保标签质量,比完全手动注释便宜得多。我们使用两个实时多相机跟踪器和具有不同设置的人重新识别(REID)模型进行了广泛的实验。该数据集在杂乱和拥挤的环境中提供了更可靠的多摄像头,多目标跟踪系统的基准。此外,我们的结果表明,在此数据集中调整跟踪器和REID模型显着提高了它们的性能。我们的数据集将在接受这项工作后公开发布。
translated by 谷歌翻译
The problem of tracking multiple objects in a video sequence poses several challenging tasks. For tracking-bydetection, these include object re-identification, motion prediction and dealing with occlusions. We present a tracker (without bells and whistles) that accomplishes tracking without specifically targeting any of these tasks, in particular, we perform no training or optimization on tracking data. To this end, we exploit the bounding box regression of an object detector to predict the position of an object in the next frame, thereby converting a detector into a Tracktor. We demonstrate the potential of Tracktor and provide a new state-of-the-art on three multi-object tracking benchmarks by extending it with a straightforward re-identification and camera motion compensation.We then perform an analysis on the performance and failure cases of several state-of-the-art tracking methods in comparison to our Tracktor. Surprisingly, none of the dedicated tracking methods are considerably better in dealing with complex tracking scenarios, namely, small and occluded objects or missing detections. However, our approach tackles most of the easy tracking scenarios. Therefore, we motivate our approach as a new tracking paradigm and point out promising future research directions. Overall, Tracktor yields superior tracking performance than any current tracking method and our analysis exposes remaining and unsolved tracking challenges to inspire future research directions.
translated by 谷歌翻译
将一致的时间标识符分配给视频序列中的多个移动对象是一个具有挑战性的问题。该问题的解决方案将在多个对象跟踪和分段问题中具有立即的分支。我们提出了一种将时间识别任务视为一种时空聚类问题的策略。我们提出了一种使用我们呼叫深度异构的AutoEncoder的卷积和完全连接的AutoEncoder的无监督学习方法,以了解来自分段掩码和检测边界框的歧视特征。我们从预训练的实例分段网络中提取掩码和它们相应的边界框,并使用依赖于任务的不确定性权重培训AutoEncoders以生成共同的潜在功能。然后,我们构建约束图,该图促进满足一组已知时间条件的对象之间的关联。然后将特征向量和约束图提供给kmeans聚类算法,以分离潜像中的相应数据点。我们使用挑战合成和现实世界多对象视频数据集评估我们的方法的性能。我们的结果表明,我们的技术优于几种最先进的方法。
translated by 谷歌翻译
卫星摄像机可以为大型区域提供连续观察,这对于许多遥感应用很重要。然而,由于对象的外观信息不足和缺乏高质量数据集,在卫星视频中实现移动对象检测和跟踪仍然具有挑战性。在本文中,我们首先构建一个具有丰富注释的大型卫星视频数据集,用于移动对象检测和跟踪的任务。该数据集由Jilin-1卫星星座收集,并由47个高质量视频组成,对象检测有1,646,038兴趣的情况和用于对象跟踪的3,711个轨迹。然后,我们引入运动建模基线,以提高检测速率并基于累积多帧差异和鲁棒矩阵完成来减少误报。最后,我们建立了第一个用于在卫星视频中移动对象检测和跟踪的公共基准,并广泛地评估在我们数据集上几种代表方法的性能。还提供了综合实验分析和富有魅力的结论。数据集可在https://github.com/qingyonghu/viso提供。
translated by 谷歌翻译
多摄像机多对象跟踪目前在计算机视野中引起了注意力,因为它在现实世界应用中的卓越性能,如具有拥挤场景或巨大空间的视频监控。在这项工作中,我们提出了一种基于空间升降的多乳制型配方的数学上优雅的多摄像多对象跟踪方法。我们的模型利用单摄像头跟踪器产生的最先进的TOOTWLET作为提案。由于这些Tracklet可能包含ID-Switch错误,因此我们通过从3D几何投影获得的新型预簇来完善它们。因此,我们派生了更好的跟踪图,没有ID交换机,更精确的数据关联阶段的亲和力成本。然后通过求解全局提升的多乳制型制剂,将轨迹与多摄像机轨迹匹配,该组件包含位于同一相机和相互相机间的Tracklet上的短路和远程时间交互。在Wildtrack DataSet的实验结果是近乎完美的结果,在校园上表现出最先进的追踪器,同时在PETS-09数据集上处于校准状态。我们将在接受纸质时进行我们的实施。
translated by 谷歌翻译
在本文中,我们介绍了Siammask,这是一个实时使用相同简单方法实时执行视觉对象跟踪和视频对象分割的框架。我们通过通过二进制细分任务来增强其损失,从而改善了流行的全面暹罗方法的离线培训程序。离线训练完成后,SiamMask只需要一个单个边界框来初始化,并且可以同时在高框架速率下进行视觉对象跟踪和分割。此外,我们表明可以通过简单地以级联的方式重新使用多任务模型来扩展框架以处理多个对象跟踪和细分。实验结果表明,我们的方法具有较高的处理效率,每秒约55帧。它可以在视觉对象跟踪基准测试中产生实时最新结果,同时以高速进行视频对象分割基准测试以高速显示竞争性能。
translated by 谷歌翻译
跟踪视频感兴趣的对象是计算机视觉中最受欢迎和最广泛应用的问题之一。然而,随着年的几年,寒武纪的用例和基准已经将问题分散在多种不同的实验设置中。因此,文献也已经分散,现在社区提出的新方法通常是专门用于仅适合一个特定的设置。要了解在多大程度上,这项专业化是必要的,在这项工作中,我们展示了UnitRack,一个解决方案来解决同一框架内的五个不同任务。 Unitrack由单一和任务不可知的外观模型组成,可以以监督或自我监督的方式学习,以及解决个人任务的多个`“头”,并且不需要培训。我们展示了在该框架内可以解决的大多数跟踪任务,并且可以成功地成功地使用相同的外观模型来获得对针对考虑大多数任务的专业方法具有竞争力的结果。该框架还允许我们分析具有最新自我监督方法获得的外观模型,从而扩展了他们的评估并与更大种类的重要问题进行比较。
translated by 谷歌翻译
多对象跟踪(MOT)的目标是检测和跟踪场景中的所有对象,同时为每个对象保留唯一的标识符。在本文中,我们提出了一种新的可靠的最新跟踪器,该跟踪器可以结合运动和外观信息的优势,以及摄像机运动补偿以及更准确的Kalman滤波器状态矢量。我们的新跟踪器在Mot17和Mot20测试集的Motchallenge [29,11]的数据集[29,11]中,Bot-Sort-Reid排名第一,就所有主要MOT指标而言:MOTA,IDF1和HOTA。对于Mot17:80.5 Mota,80.2 IDF1和65.0 HOTA。源代码和预培训模型可在https://github.com/niraharon/bot-sort上找到
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
每年,AEDESAEGYPTI蚊子都感染了数百万人,如登录,ZIKA,Chikungunya和城市黄热病等疾病。战斗这些疾病的主要形式是通过寻找和消除潜在的蚊虫养殖场来避免蚊子繁殖。在这项工作中,我们介绍了一个全面的空中视频数据集,获得了无人驾驶飞行器,含有可能的蚊帐。使用识别所有感兴趣对象的边界框手动注释视频数据集的所有帧。该数据集被用于开发基于深度卷积网络的这些对象的自动检测系统。我们提出了通过在可以注册检测到的对象的时空检测管道的对象检测流水线中的融合来利用视频中包含的时间信息,这些时间是可以注册检测到的对象的,最大限度地减少最伪正和假阴性的出现。此外,我们通过实验表明使用视频比仅使用框架对马赛克组成马赛克更有利。使用Reset-50-FPN作为骨干,我们可以分别实现0.65和0.77的F $ _1 $ -70分别对“轮胎”和“水箱”的对象级别检测,说明了正确定位潜在蚊子的系统能力育种对象。
translated by 谷歌翻译
由于卷积神经网络(CNN)在过去的十年中检测成功,多对象跟踪(MOT)通过检测方法的使用来控制。随着数据集和基础标记网站的发布,研究方向已转向在跟踪时在包括重新识别对象的通用场景(包括重新识别(REID))上的最佳准确性。在这项研究中,我们通过提供专用的行人数据集并专注于对性能良好的多对象跟踪器的深入分析来缩小监视的范围)现实世界应用的技术。为此,我们介绍SOMPT22数据集;一套新的,用于多人跟踪的新套装,带有带注释的简短视频,该视频从位于杆子上的静态摄像头捕获,高度为6-8米,用于城市监视。与公共MOT数据集相比,这提供了室外监视的MOT的更为集中和具体的基准。我们分析了该新数据集上检测和REID网络的使用方式,分析了将MOT跟踪器分类为单发和两阶段。我们新数据集的实验结果表明,SOTA远非高效率,而单一跟踪器是统一快速执行和准确性的良好候选者,并具有竞争性的性能。该数据集将在以下网址提供:sompt22.github.io
translated by 谷歌翻译
临床医生在手术室(OR)的细粒度定位是设计新一代或支持系统的关键组成部分。需要基于人像素的分段和身体视觉计算机的计算机视觉模型检测,以更好地了解OR的临床活动和空间布局。这是具有挑战性的,这不仅是因为或图像与传统视觉数据集有很大不同,还因为在隐私问题上很难收集和生成数据和注释。为了解决这些问题,我们首先研究了如何在低分辨率图像上进行姿势估计和实例分割,而下采样因子从1x到12倍进行下采样因子。其次,为了解决域的偏移和缺乏注释,我们提出了一种新型的无监督域适应方法,称为适配器,以使模型从野外标记的源域中适应统计上不同的未标记目标域。我们建议在未标记的目标域图像的不同增强上利用明确的几何约束,以生成准确的伪标签,并使用这些伪标签在自我训练框架中对高分辨率和低分辨率或图像进行训练。此外,我们提出了分离的特征归一化,以处理统计上不同的源和目标域数据。对两个或数据集MVOR+和TUM-或TUM-或测试的详细消融研究的广泛实验结果表明,我们方法对强构建的基线的有效性,尤其是在低分辨率的隐私性或图像上。最后,我们在大规模可可数据集上显示了我们作为半监督学习方法(SSL)方法的普遍性,在这里,我们获得了可比较的结果,而对经过100%标记的监督培训的模型的标签监督只有1%。 。
translated by 谷歌翻译
To track the 3D locations and trajectories of the other traffic participants at any given time, modern autonomous vehicles are equipped with multiple cameras that cover the vehicle's full surroundings. Yet, camera-based 3D object tracking methods prioritize optimizing the single-camera setup and resort to post-hoc fusion in a multi-camera setup. In this paper, we propose a method for panoramic 3D object tracking, called CC-3DT, that associates and models object trajectories both temporally and across views, and improves the overall tracking consistency. In particular, our method fuses 3D detections from multiple cameras before association, reducing identity switches significantly and improving motion modeling. Our experiments on large-scale driving datasets show that fusion before association leads to a large margin of improvement over post-hoc fusion. We set a new state-of-the-art with 12.6% improvement in average multi-object tracking accuracy (AMOTA) among all camera-based methods on the competitive NuScenes 3D tracking benchmark, outperforming previously published methods by 6.5% in AMOTA with the same 3D detector.
translated by 谷歌翻译