A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
在本文中,我们提出了广义参数对比度学习(GPACO/PACO),该学习在不平衡和平衡数据上都很好地工作。基于理论分析,我们观察到,受监督的对比损失倾向于偏向高频类别,从而增加了学习不平衡的学习难度。我们从优化的角度介绍了一组参数班的可学习中心,以重新平衡。此外,我们在平衡的环境下分析了GPACO/PACO损失。我们的分析表明,GPACO/PACO可以适应地增强同一等级样品的强度,因为将更多的样品与相应的中心一起拉在一起并有益于艰难的示例学习。长尾基准测试的实验表明了长尾识别的新最先进。在完整的Imagenet上,与MAE模型相比,从CNN到接受GPACO损失训练的视觉变压器的模型显示出更好的泛化性能和更强的鲁棒性。此外,GPACO可以应用于语义分割任务,并在4个最受欢迎的基准测试中观察到明显的改进。我们的代码可在https://github.com/dvlab-research/parametric-contrastive-learning上找到。
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
深度神经网络在严重的类不平衡数据集上的表现不佳。鉴于对比度学习的有希望的表现,我们提出了重新平衡的暹罗对比度采矿(RESCOM)来应对不平衡的识别。基于数学分析和仿真结果,我们声称监督的对比学习在原始批次和暹罗批次水平上都遭受双重失衡问题,这比长尾分类学习更为严重。在本文中,在原始批处理水平上,我们引入了级别平衡的监督对比损失,以分配不同类别的自适应权重。在暹罗批次级别,我们提出了一个级别平衡的队列,该队列维持所有类的键相同。此外,我们注意到,相对于对比度逻辑的不平衡对比损失梯度可以将其分解为阳性和负面因素,易于阳性和易于负面因素将使对比度梯度消失。我们建议有监督的正面和负面对挖掘,以获取信息对的对比度计算并改善表示形式学习。最后,为了大致最大程度地提高两种观点之间的相互信息,我们提出了暹罗平衡的软性软件,并与一阶段训练的对比损失结合。广泛的实验表明,在多个长尾识别基准上,RESCON优于先前的方法。我们的代码和模型可公开可用:https://github.com/dvlab-research/rescom。
translated by 谷歌翻译
Model bias triggered by long-tailed data has been widely studied. However, measure based on the number of samples cannot explicate three phenomena simultaneously: (1) Given enough data, the classification performance gain is marginal with additional samples. (2) Classification performance decays precipitously as the number of training samples decreases when there is insufficient data. (3) Model trained on sample-balanced datasets still has different biases for different classes. In this work, we define and quantify the semantic scale of classes, which is used to measure the feature diversity of classes. It is exciting to find experimentally that there is a marginal effect of semantic scale, which perfectly describes the first two phenomena. Further, the quantitative measurement of semantic scale imbalance is proposed, which can accurately reflect model bias on multiple datasets, even on sample-balanced data, revealing a novel perspective for the study of class imbalance. Due to the prevalence of semantic scale imbalance, we propose semantic-scale-balanced learning, including a general loss improvement scheme and a dynamic re-weighting training framework that overcomes the challenge of calculating semantic scales in real-time during iterations. Comprehensive experiments show that dynamic semantic-scale-balanced learning consistently enables the model to perform superiorly on large-scale long-tailed and non-long-tailed natural and medical datasets, which is a good starting point for mitigating the prevalent but unnoticed model bias.
translated by 谷歌翻译
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
现实世界中的数据通常遵循长尾巴的分布,其中一些多数类别占据了大多数数据,而大多数少数族裔类别都包含有限数量的样本。分类模型最小化跨凝结的努力来代表和分类尾部类别。尽管已经对学习无偏分类器的学习问题进行了充分的研究,但代表不平衡数据的方法却没有探索。在本文中,我们专注于表示不平衡数据的表示。最近,受到监督的对比学习最近在平衡数据上表现出了有希望的表现。但是,通过我们的理论分析,我们发现对于长尾数据,它未能形成常规的单纯形,这是代表学习的理想几何配置。为了纠正SCL的优化行为并进一步改善了长尾视觉识别的性能,我们提出了平衡对比度学习(BCL)的新型损失。与SCL相比,我们在BCL:类平均水平方面有两个改进,可以平衡负类的梯度贡献。课堂组合,允许所有类都出现在每个迷你批次中。提出的平衡对比度学习(BCL)方法满足形成常规单纯形的条件并有助于跨透明拷贝的优化。配备了BCL,提出的两分支框架可以获得更强的特征表示,并在诸如CIFAR-10-LT,CIFAR-100-LT,Imagenet-LT和Inaturalist2018之类的长尾基准数据集上实现竞争性能。我们的代码可在\ href {https://github.com/flamiezhu/bcl} {this url}中获得。
translated by 谷歌翻译
长尾学习旨在应对在现实情况下严重的阶级失衡下统治训练程序的关键挑战。但是,很少有人注意如何量化表示空间中头等的优势严重性。在此激励的情况下,我们将基于余弦的分类器推广到von mises-fisher(VMF)混合模型,该模型被称为VMF分类器,该模型可以通过计算分布重叠系数来定量地测量超晶体空间上的表示质量。据我们所知,这是从分布重叠系数的角度来衡量分类器和特征的表示质量的第一项工作。最重要的是,我们制定了类间差异和类功能的一致性损失项,以减轻分类器的重量之间的干扰,并与分类器的权重相结合。此外,一种新型的训练后校准算法设计为零成本通过类间重叠系数来提高性能。我们的方法的表现优于先前的工作,并具有很大的利润,并在长尾图像分类,语义细分和实例分段任务上实现了最先进的性能(例如,我们在Imagenet-50中实现了55.0 \%的总体准确性LT)。我们的代码可在https://github.com/vipailab/vmf \_op上找到。
translated by 谷歌翻译
现代方法通常将语义分割标记为每个像素分类任务,而使用替代掩码分类处理实例级分割。我们的主要洞察力:掩码分类是足够的一般,可以使用完全相同的模型,丢失和培训过程来解决语义和实例级分段任务。在此观察之后,我们提出了一个简单的掩模分类模型,该模型预测了一组二进制掩码,每个模型与单个全局类标签预测相关联。总的来说,所提出的基于掩模分类的方法简化了语义和Panoptic分割任务的有效方法的景观,并显示出优异的经验结果。特别是,当类的数量大时,我们观察到掩码形成器优于每个像素分类基线。我们的面具基于分类的方法优于当前最先进的语义(ADE20K上的55.6 miou)和Panoptic Seation(Coco)模型的Panoptic Seationation(52.7 PQ)。
translated by 谷歌翻译
这项工作认为有监督的对比度学习语义细分。我们应用对比度学习来增强语义分割网络提取的多尺度特征的判别能力。我们的关键方法论洞察力是利用从模型编码器本身的多个阶段发出的特征空间中的样本,既不需要数据增强,也不需要在线存储库来获取一组不同的样本。为了允许这样的扩展,我们引入了一个高效且有效的抽样过程,可以在多个尺度上对编码器的特征应用对比度损失。此外,通过首先将编码器的多尺度表示形式映射到一个共同的特征空间,我们通过引入跨尺度对比度学习将高分辨率局部特征与低分辨率全球特征联系起来,从而实例化了一种新颖的监督局部全球约束形式。合并,我们的多尺度和跨尺度对比度损失可提高各种模型(DeepLabv3,hrnet,ocrnet,upernet)的性能,以及CNN和Transformer骨架,当对4个不同的数据集进行评估(CityScapes,PascalContext,ADE20K)时,对4个不同的数据集进行了评估。外科(CADIS)域。我们的代码可在https://github.com/rvimla​​b/ms_cs_contrseg上找到。来自天然(CityScapes,PascalContext,ADE20K)的数据集,也是外科手术(CADIS)域。
translated by 谷歌翻译
深度神经网络的3D语义分割的最新进展已取得了显着的成功,并且可用数据集的性能快速提高。但是,当前的3D语义分割基准仅包含少数类别 - 例如,扫描仪和semantickitti少于30个类别,这些类别不足以反映真实环境的多样性(例如,语义图像涵盖数百到数千个类别的类别)。因此,我们建议研究3D语义分割的较大词汇,并在扫描仪数据上具有新的扩展基准测试,其中有200个类别类别,比以前研究的数量级要多。大量的类别类别也引起了巨大的自然级别不平衡,这两者对于现有的3D语义分割方法都具有挑战性。为了在这种情况下了解更多强大的3D功能,我们提出了一种以语言为导向的预训练方法来鼓励学习的3D功能,该方法可能有限的培训示例以靠近其预训练的文本嵌入。广泛的实验表明,我们的方法始终优于我们所提出的基准测试( +9%相对MIOU)的3D语义分割的最先进的3D预训练,包括仅使用5%的 +25%相对MIOU的有限数据方案注释。
translated by 谷歌翻译
自动手术场景细分是促进现代手术剧院认知智能的基础。以前的作品依赖于常规的聚合模块(例如扩张的卷积,卷积LSTM),仅利用局部环境。在本文中,我们提出了一个新颖的框架STSWINCL,该框架通过逐步捕获全球环境来探讨互补的视频内和访问间关系以提高细分性能。我们首先开发了层次结构变压器,以捕获视频内关系,其中包括来自邻居像素和以前的帧的富裕空间和时间提示。提出了一个联合时空窗口移动方案,以有效地将这两个线索聚集到每个像素嵌入中。然后,我们通过像素到像素对比度学习探索视频间的关系,该学习很好地结构了整体嵌入空间。开发了一个多源对比度训练目标,可以将视频中的像素嵌入和基础指导分组,这对于学习整个数据的全球属性至关重要。我们在两个公共外科视频基准测试中广泛验证了我们的方法,包括Endovis18 Challenge和Cadis数据集。实验结果证明了我们的方法的有希望的性能,这始终超过了先前的最新方法。代码可在https://github.com/yuemingjin/stswincl上找到。
translated by 谷歌翻译
Jaccard索引,也称为交叉联盟(iou),是图像语义分段中最关键的评估度量之一。然而,由于学习目的既不可分解也不是可分解的,则iou得分的直接优化是非常困难的。虽然已经提出了一些算法来优化其代理,但没有提供泛化能力的保证。在本文中,我们提出了一种边缘校准方法,可以直接用作学习目标,在数据分布上改善IOO的推广,通过刚性下限为基础。本方案理论上,根据IOU分数来确保更好的分割性能。我们评估了在七个图像数据集中所提出的边缘校准方法的有效性,显示使用深度分割模型的其他学习目标的IOU分数大量改进。
translated by 谷歌翻译
现实世界数据往往展现出长期分布,重量级别不平衡,其中大多数课程可以主导培训过程并改变少数阶层的决策边界。最近,研究人员调查了监督对长尾识别的对比学习的潜力,并证明它提供了强大的性能增益。在本文中,我们表明,虽然监督对比学习可以有助于提高性能,但过去的基线通过不平衡数据分布引入的均匀性差。这种差的均匀性在来自特征空间中具有差的少数阶级的样品中表现出来。为了解决这个问题,我们提出了有针对性的监督对比学习(TSC),从而提高了极度上的特征分布的均匀性。 TSC首先生成一组均匀分布在极度上的目标。然后,在训练期间使不同类别的特征会聚到这些不同的和均匀分布的目标。这迫使所有类别,包括少数群体类别,以维持特征空间中的统一分布,改善了类边界,即使在存在长尾数据的情况下也能提供更好的泛化。多个数据集的实验表明,TSC在长尾识别任务上实现了最先进的性能。
translated by 谷歌翻译
基于深度学习的分类中特征表示的主要挑战之一是设计表现出强大歧视力的适当损失功能。经典的SoftMax损失并不能明确鼓励对特征的歧视性学习。研究的一个流行方向是将边缘纳入良好的损失中,以实施额外的课内紧凑性和阶层间的可分离性,但是,这是通过启发式手段而不是严格的数学原则来开发的。在这项工作中,我们试图通过将原则优化目标提出为最大的利润率来解决这一限制。具体而言,我们首先将类别的边缘定义为级别间的可分离性的度量,而样品边缘是级别的紧凑性的度量。因此,为了鼓励特征的歧视性表示,损失函数应促进类和样品的最大可能边缘。此外,我们得出了广义的保证金软损失,以得出现有基于边缘的损失的一般结论。这个原则性的框架不仅提供了新的观点来理解和解释现有的基于保证金的损失,而且还提供了新的见解,可以指导新工具的设计,包括样本保证金正则化和最大的平衡案例的最大保证金损失,和零中心的正则化案例。实验结果证明了我们的策略对各种任务的有效性,包括视觉分类,分类不平衡,重新识别和面部验证。
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples). In the literature, class re-balancing strategies (e.g., re-weighting and re-sampling) are the prominent and effective methods proposed to alleviate the extreme imbalance for dealing with long-tailed problems. In this paper, we firstly discover that these rebalancing methods achieving satisfactory recognition accuracy owe to that they could significantly promote the classifier learning of deep networks. However, at the same time, they will unexpectedly damage the representative ability of the learned deep features to some extent. Therefore, we propose a unified Bilateral-Branch Network (BBN) to take care of both representation learning and classifier learning simultaneously, where each branch does perform its own duty separately. In particular, our BBN model is further equipped with a novel cumulative learning strategy, which is designed to first learn the universal patterns and then pay attention to the tail data gradually. Extensive experiments on four benchmark datasets, including the large-scale iNaturalist ones, justify that the proposed BBN can significantly outperform state-of-the-art methods. Furthermore, validation experiments can demonstrate both our preliminary discovery and effectiveness of tailored designs in BBN for long-tailed problems. Our method won the first place in the iNaturalist 2019 large scale species classification competition, and our code is open-source and available at https://github.com/Megvii-Nanjing/BBN . * Q. Cui and Z.-M. Chen's contribution was made when they were interns in Megvii Research Nanjing, Megvii Technology, China. X.
translated by 谷歌翻译
我们提出了一种称为分配 - 均衡损失的新损失功能,用于展示长尾类分布的多标签识别问题。与传统的单标分类问题相比,由于两个重要问题,多标签识别问题通常更具挑战性,即标签的共同发生以及负标签的主导地位(当被视为多个二进制分类问题时)。分配 - 平衡损失通过对标准二进制交叉熵丢失的两个关键修改来解决这些问题:1)重新平衡考虑标签共发生造成的影响的重量的新方法,以及2)负耐受规则化以减轻负标签的过度抑制。 Pascal VOC和Coco的实验表明,使用这种新损失功能训练的模型可实现现有方法的显着性能。代码和型号可在:https://github.com/wutong16/distributionbalancedloss。
translated by 谷歌翻译
与其他类别(称为少数族裔或尾巴类)相比,很少的类或类别(称为多数或头等类别的类别)具有更高的数据样本数量,在现实世界中,长尾数据集经常遇到。在此类数据集上培训深层神经网络会给质量级别带来偏见。到目前为止,研究人员提出了多种加权损失和数据重新采样技术,以减少偏见。但是,大多数此类技术都认为,尾巴类始终是最难学习的类,因此需要更多的重量或注意力。在这里,我们认为该假设可能并不总是成立的。因此,我们提出了一种新颖的方法,可以在模型的训练阶段动态测量每个类别的瞬时难度。此外,我们使用每个班级的难度度量来设计一种新型的加权损失技术,称为“基于阶级难度的加权(CDB-W)损失”和一种新型的数据采样技术,称为“基于类别难度的采样)(CDB-S )'。为了验证CDB方法的广泛可用性,我们对多个任务进行了广泛的实验,例如图像分类,对象检测,实例分割和视频操作分类。结果验证了CDB-W损失和CDB-S可以在许多类似于现实世界中用例的类别不平衡数据集(例如Imagenet-LT,LVIS和EGTEA)上实现最先进的结果。
translated by 谷歌翻译
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at https://github.com/XuZhengzhuo/LiVT.
translated by 谷歌翻译