我们最近提出了一个以DBM为中心的新群集操作系统堆栈DBO。DBO通过将ML代码封装在存储过程中,集中辅助ML数据,为基础DBMS内置的安全性,共同关注ML代码和数据以及跟踪数据和工作流源来源,从而为ML应用程序提供了独特的支持。在这里,我们在两个ML应用程序附近演示了这些好处的子集。我们首先表明,使用GPU的图像分类和对象检测模型可以用作DBOS存储程序,具有与现有系统竞争性能的DBOS存储程序。然后,我们提出了一项1D CNN,训练有素,可以在DBOS支持的Web服务上检测HTTP请求中的异常情况,从而实现SOTA结果。我们使用此模型来开发交互式异常检测系统,并通过定性用户反馈对其进行评估,并证明了其有用性作为未来工作的概念证明,以在DBO上开发实时的实时安全服务。
translated by 谷歌翻译
在线旅行社(OTA)的网站在元搜索竞标引擎上宣传。预测酒店将收到的单击数量的给定出价金额的问题是管理元搜索引擎上OTA广告活动的重要一步,因为出价时间的点击次数定义了要生成的成本。在这项工作中,各种回归器都结束了,以提高点击预测性能。按照预处理程序,将功能集分为火车和测试组,具体取决于样品的记录日期。然后,将数据收集进行基于XGBoost的缩小降低,从而大大降低了特征的维度。然后通过将贝叶斯高参数优化应用于XGBoost,LightGBM和SGD模型来找到最佳的高参数。单独测试了十种不同的机器学习模型,并将它们组合在一起以创建合奏模型。提出了三种替代合奏解决方案。相同的测试集用于测试单个和集合模型,46个模型组合的结果表明,堆栈集合模型得出所有的R2分数。总之,整体模型将预测性能提高了约10%。
translated by 谷歌翻译
最近的机器学习进展已直接从数据中直接提出了对未知连续时间系统动力学的黑盒估计。但是,较早的作品基于近似ODE解决方案或点估计。我们提出了一种新型的贝叶斯非参数模型,该模型使用高斯工艺直接从数据中直接从数据中推断出未知ODE系统的后代。我们通过脱钩的功能采样得出稀疏的变异推断,以表示矢量场后代。我们还引入了一种概率的射击增强,以从任意长的轨迹中有效推断。该方法证明了计算矢量场后代的好处,预测不确定性得分优于多个ODE学习任务的替代方法。
translated by 谷歌翻译