异常在所有科学领域都无处不在,并且由于对数据分布的不完整知识或突然进入发挥和扭曲观测的未知过程,因此可以表达意外事件。由于此类事件“稀有性,培训对异常检测(广告)任务的深入学习模型,科学家仅依赖于”正常“数据,即非异常样本。因此,让神经网络推断输入数据下方的分布。在这种情况下,我们提出了一种小说框架,名为多层单级分类(MOCCA),在广告任务中培训和测试深入学习模型。具体来说,我们将它应用于AutoEncoders。我们工作中的一个关键新颖性源于明确优化广告任务的中间陈述。实际上,与常用方法不同,将神经网络视为单个计算块,即,仅使用最后一层的输出,MOCCA明确地利用了深度架构的多层结构。每个层的特征空间在训练期间针对广告进行了优化,而在测试阶段,从训练的层提取的深表示混合以检测异常。使用Mocca,我们将培训过程分为两个步骤。首先,AutoEncoder仅在重建任务上培训。然后,我们只保留编码器任务,以最小化输出表示和参考点之间的L_2距离,在每个考虑的层上都是无异常的训练数据质心。随后,我们将在编码器模型的各种训练层中提取的深度特征组合以检测推理时间的异常。为了评估使用MOCCA培训的模型的性能,我们对公共数据集进行了广泛的实验。我们表明,我们的拟议方法对文献中可用的最先进的方法达到了可比或卓越的性能。
translated by 谷歌翻译