机器学习(ML)方法已被证明是物理科学中非常成功的工具,特别是在应用于实验数据分析时。人工智能特别擅长在高维数据中识别模式,通常优于人类。在这里,我们应用了一个名为主成分分析(PCA)的简单ML工具,以研究来自μON光谱的数据。来自该实验的测量数量是不对称功能,其具有关于样品的平均内在磁场的信息。不对称功能的变化可能表示相变;然而,这些变化可能非常微妙,并且现有的分析方法需要了解材料的特定物理。 PCA是一个无人驾驶的ML工具,这意味着不需要对输入数据的假设,但我们发现它仍然可以成功应用于不对称曲线,并且可以恢复相位转换的指示。将该方法应用于具有不同底层物理的一系列磁性材料。我们发现,同时对所有这些材料进行PCA可以对相变指示器的清晰度产生积极影响,并且还可以改善不对称功能最重要变化的检测。对于这个联合PCA,我们介绍了一种简单的方法来跟踪不同材料的贡献以获得更有意义的分析。
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
Despite recent success in large language model (LLM) reasoning, LLMs still struggle with hierarchical multi-step reasoning like generating complex programs. In these cases, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs, based on hierarchical function descriptions in natural language. Parsel can be used across domains requiring hierarchical reasoning, e.g. code synthesis, theorem proving, and robotic planning. We demonstrate Parsel's capabilities by using it to generate complex programs that cannot currently be automatically implemented from one description and backtranslating Python programs in the APPS dataset. Beyond modeling capabilities, Parsel allows problem-solving with high-level algorithmic designs, benefiting both students and professional programmers.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
The intersection of ground reaction forces in a small, point-like area above the center of mass has been observed in computer simulation models and human walking experiments. This intersection point is often called a virtual pivot point (VPP). With the VPP observed so ubiquitously, it is commonly assumed to provide postural stability for bipedal walking. In this study, we challenge this assumption by questioning if walking without a VPP is possible. Deriving gaits with a neuromuscular reflex model through multi-stage optimization, we found stable walking patterns that show no signs of the VPP-typical intersection of ground reaction forces. We, therefore, conclude that a VPP is not necessary for upright, stable walking. The non-VPP gaits found are stable and successfully rejected step-down perturbations, which indicates that a VPP is not primarily responsible for locomotion robustness or postural stability. However, a collision-based analysis indicates that non-VPP gaits increased the potential for collisions between the vectors of the center of mass velocity and ground reaction forces during walking, suggesting an increased mechanical cost of transport. Although our computer simulation results have yet to be confirmed through experimental studies, they already strongly challenge the existing explanation of the VPP's function and provide an alternative explanation.
translated by 谷歌翻译
Person recognition at a distance entails recognizing the identity of an individual appearing in images or videos collected by long-range imaging systems such as drones or surveillance cameras. Despite recent advances in deep convolutional neural networks (DCNNs), this remains challenging. Images or videos collected by long-range cameras often suffer from atmospheric turbulence, blur, low-resolution, unconstrained poses, and poor illumination. In this paper, we provide a brief survey of recent advances in person recognition at a distance. In particular, we review recent work in multi-spectral face verification, person re-identification, and gait-based analysis techniques. Furthermore, we discuss the merits and drawbacks of existing approaches and identify important, yet under explored challenges for deploying remote person recognition systems in-the-wild.
translated by 谷歌翻译
In recent years, image and video delivery systems have begun integrating deep learning super-resolution (SR) approaches, leveraging their unprecedented visual enhancement capabilities while reducing reliance on networking conditions. Nevertheless, deploying these solutions on mobile devices still remains an active challenge as SR models are excessively demanding with respect to workload and memory footprint. Despite recent progress on on-device SR frameworks, existing systems either penalize visual quality, lead to excessive energy consumption or make inefficient use of the available resources. This work presents NAWQ-SR, a novel framework for the efficient on-device execution of SR models. Through a novel hybrid-precision quantization technique and a runtime neural image codec, NAWQ-SR exploits the multi-precision capabilities of modern mobile NPUs in order to minimize latency, while meeting user-specified quality constraints. Moreover, NAWQ-SR selectively adapts the arithmetic precision at run time to equip the SR DNN's layers with wider representational power, improving visual quality beyond what was previously possible on NPUs. Altogether, NAWQ-SR achieves an average speedup of 7.9x, 3x and 1.91x over the state-of-the-art on-device SR systems that use heterogeneous processors (MobiSR), CPU (SplitSR) and NPU (XLSR), respectively. Furthermore, NAWQ-SR delivers an average of 3.2x speedup and 0.39 dB higher PSNR over status-quo INT8 NPU designs, but most importantly mitigates the negative effects of quantization on visual quality, setting a new state-of-the-art in the attainable quality of NPU-based SR.
translated by 谷歌翻译
The lack of standardization is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations due to differences in hardware and acquisition parameters. In recent years, MR harmonization using image synthesis with disentanglement has been proposed to compensate for the undesired contrast variations. Despite the success of existing methods, we argue that three major improvements can be made. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both Tw-weighted and T2-weighted images must be available), which limits their applicability. Third, existing methods generally are sensitive to imaging artifacts. In this paper, we present a novel approach, Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), to address these three issues. We first propose an anatomy fusion module that enables HACA3 to respect the anatomical differences between MR contrasts. HACA3 is also robust to imaging artifacts and can be trained and applied to any set of MR contrasts. Experiments show that HACA3 achieves state-of-the-art performance under multiple image quality metrics. We also demonstrate the applicability of HACA3 on downstream tasks with diverse MR datasets acquired from 21 sites with different field strengths, scanner platforms, and acquisition protocols.
translated by 谷歌翻译
Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.
translated by 谷歌翻译