传入/传出车辆的记录是根本原因分析的关键信息,以打击各种敏感组织中的安全违规事件。 RFID标记会阻碍物流和技术方面的车辆跟踪解决方案的可扩展性。例如,要求标记为RFID的每个传入车辆(部门或私人)是严重的限制,并且与RFID一起检测异常车辆运动的视频分析是不平凡的。我们利用公开可用的计算机视觉算法实现,使用有限状态机形式主义开发可解释的车辆跟踪算法。国家机器将用于状态转换的级联对象检测和光学特征识别(OCR)模型中的输入。我们从系统部署站点中评估了75个285辆车的视频片段中提出的方法。我们观察到检测率受速度和车辆类型的影响最大。当车辆运动仅限于在检查点类似于RFID标记的检查点时,将达到最高的检测率。我们进一步分析了700个对Live DATA的车辆跟踪预测,并确定大多数车辆数量预测误差是由于无法辨认的文本,图像布鲁尔,文本遮挡,文本遮挡和vecab外字母引起的。为了进行系统部署和性能增强,我们希望我们正在进行的系统监控能够提供证据,以在安全检查点上建立更高的车辆通知SOP,并将已部署的计算机视觉模型和状态模型的微调驱动为建立拟议的方法作为RFID标记的有希望的替代方法。
translated by 谷歌翻译
印度车辆板在尺寸,字体,脚本和形状方面的种类繁多。因此,自动数板识别(ANPR)解决方案的开发是具有挑战性的,因此需要一个多样化的数据集作为示例集合。但是,缺少印度情景的全面数据集,从而阻碍了在公开可用和可重现的ANPR解决方案方面的进展。许多国家已经投入了努力,为中国和面向应用程序的车牌(AOLP)数据集开发诸如中国城市停车数据集(CCPD)等全面的ANPR数据集为我们提供了努力。在这项工作中,我们发布了一个扩展的数据集,该数据集目前由1.5K图像组成,以及可扩展且可重复的程序,以增强该数据集以开发印度条件的ANPR解决方案。我们利用此数据集探索了印度场景的端到端(E2E)ANPR体系结构,该架构最初是根据CCPD数据集为中国车辆号码板识别的。当我们为数据集定制体系结构时,我们遇到了见解,我们在本文中讨论了这一点。我们报告了CCPD作者提供的模型直接可重复使用性的障碍,因为印度数字板的极端多样性以及相对于CCPD数据集的分布差异。在将印度数据集的特性与中国数据集对齐后,在LP检测中观察到了42.86%的改善。在这项工作中,我们还将E2E数板检测模型的性能与Yolov5模型进行了比较,并在可可数据集上进行了预训练,并在印度车辆图像上进行了微调。鉴于用于微调检测模块和Yolov5的数量印度车辆图像是相同的,我们得出的结论是,基于COCO数据集而不是CCPD数据集开发针对印度条件的ANPR解决方案更有效。
translated by 谷歌翻译
Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
We propose a new model-based offline RL framework, called Adversarial Models for Offline Reinforcement Learning (ARMOR), which can robustly learn policies to improve upon an arbitrary baseline policy regardless of data coverage. Based on the concept of relative pessimism, ARMOR is designed to optimize for the worst-case relative performance when facing uncertainty. In theory, we prove that the learned policy of ARMOR never degrades the performance of the baseline policy with any admissible hyperparameter, and can learn to compete with the best policy within data coverage when the hyperparameter is well tuned, and the baseline policy is supported by the data. Such a robust policy improvement property makes ARMOR especially suitable for building real-world learning systems, because in practice ensuring no performance degradation is imperative before considering any benefit learning can bring.
translated by 谷歌翻译
Tuberculosis (TB), an infectious bacterial disease, is a significant cause of death, especially in low-income countries, with an estimated ten million new cases reported globally in $2020$. While TB is treatable, non-adherence to the medication regimen is a significant cause of morbidity and mortality. Thus, proactively identifying patients at risk of dropping off their medication regimen enables corrective measures to mitigate adverse outcomes. Using a proxy measure of extreme non-adherence and a dataset of nearly $700,000$ patients from four states in India, we formulate and solve the machine learning (ML) problem of early prediction of non-adherence based on a custom rank-based metric. We train ML models and evaluate against baselines, achieving a $\sim 100\%$ lift over rule-based baselines and $\sim 214\%$ over a random classifier, taking into account country-wide large-scale future deployment. We deal with various issues in the process, including data quality, high-cardinality categorical data, low target prevalence, distribution shift, variation across cohorts, algorithmic fairness, and the need for robustness and explainability. Our findings indicate that risk stratification of non-adherent patients is a viable, deployable-at-scale ML solution.
translated by 谷歌翻译
随着数字时代的出现,由于技术进步,每天的任务都是自动化的。但是,技术尚未为人们提供足够的工具和保障措施。随着互联网连接全球越来越多的设备,确保连接设备的问题以均匀的螺旋速率增长。数据盗窃,身份盗窃,欺诈交易,密码妥协和系统漏洞正在成为常规的日常新闻。最近的人工智能进步引起了网络攻击的激烈威胁。 AI几乎应用于不同科学和工程的每个领域。 AI的干预不仅可以使特定任务自动化,而且可以提高效率。因此,很明显,如此美味的传播对网络犯罪分子来说是非常开胃的。因此,传统的网络威胁和攻击现在是``智能威胁''。本文讨论了网络安全和网络威胁,以及传统和智能的防御方式,以防止网络攻击。最终,结束讨论,以潜在的潜在前景结束讨论AI网络安全。
translated by 谷歌翻译
深神经网络(DNN)通常被设计为依次级联的可区分块/层,其预测模块仅连接到其最后一层。 DNN可以与沿主链的多个点的预测模块相连,其中推理可以在中间阶段停止而无需通过所有模块。最后一个退出点可能会提供更好的预测错误,但还涉及更多的计算资源和延迟。就预测误差和成本而言,一个“最佳”的出口是可取的。最佳出口点可能取决于任务的潜在分布,并且可能会从一个任务类型变为另一种任务类型。在神经推断期间,实例的基础真理可能无法获得,并且每个出口点的错误率无法估算。因此,人们面临在无监督环境中选择最佳出口的问题。先前的工作在离线监督设置中解决了此问题,假设可以使用足够的标记数据来估计每个出口点的错误率并调整参数以提高准确性。但是,经过预训练的DNN通常被部署在新领域中,可能无法提供大量的地面真相。我们将退出选择的问题建模为无监督的在线学习问题,并使用匪徒理论来识别最佳出口点。具体而言,我们专注于弹性BERT,这是一种预先训练的多EXIT DNN,以证明它“几乎”满足了强大的优势(SD)属性,从而可以在不知道地面真相标签的情况下学习在线设置中的最佳出口。我们开发了名为UEE-UCB的基于上限(UCB)的上限(UCB)算法,该算法可证明在SD属性下实现了子线性后悔。因此,我们的方法提供了一种自适应学习多种exit DNN中特定于域特异性的最佳出口点的方法。我们从IMDB和Yelp数据集上进行了验证算法验证我们的算法。
translated by 谷歌翻译
深度学习算法的最新进展为解决许多医学图像分析问题带来了重大好处。培训深度学习模型通常需要具有专家标记注释的大型数据集。但是,获取专家标记的注释不仅昂贵,而且主观,容易出错,并且观察者内部变异性会引入标签。由于解剖学的模棱两可,使用深度学习模型来细分医学图像时,这尤其是一个问题。基于图像的医学诊断工具使用经过不正确分段标签训练的深度学习模型可以导致错误的诊断和治疗建议。与单评论注释相比,多评价者注释可能更适合于使用小型培训集的深度学习模型进行训练。本文的目的是开发和评估一种基于MRI中病变特征的多评价者注释和解剖学知识来生成概率标签的方法,以及一种使用概率的标签使用归一化活动性损失作为A的病变特征的解剖学知识,以训练分割模型”。耐噪声损失的功能。通过将17个膝盖MRI扫描的二进制基础真理进行比较,以评估该模型,以用于临床分割和检测骨髓病变(BML)。该方法与二进制跨透镜损失函数相比,该方法成功提高了精度14,召回22和骰子得分8%。总体而言,这项工作的结果表明,使用软标签的拟议归一化主动损失成功地减轻了嘈杂标签的影响。
translated by 谷歌翻译
无线传感器网络(WSN)是一项有前途的技术,几乎在各行各业中都有巨大的应用。 WSN的关键应用之一是边境地区和国防机构的入侵检测和监视。边界区域以数百到数千英里的范围延伸,因此不可能在整个边界地区巡逻。结果,敌人可以从任何缺乏监视的地方进入,并导致丧生或摧毁军事机构。 WSN可以是边境地区入侵检测和监视问题的可行解决方案。在边境地区和附近的关键区域(例如军事宪法)发现敌人是一项时间敏感的任务,因为延迟几秒钟可能会带来灾难性的后果。因此,必须设计能够在部署系统范围内识别和检测敌人的系统。在本文中,我们提出了一个基于完全连接的馈送人工神经网络(ANN)的深度学习体系结构,以准确预测K行数以进行快速入侵检测和预防。我们已经使用四个潜在特征,即圆形区域,传感器的传感范围,传感器的传感器范围以及高斯和均匀传感器分布的传感器数量训练和评估了馈电ANN模型。这些特征是通过蒙特卡洛模拟提取的。在此过程中,我们发现该模型可以准确预测具有相关系数(r = 0.78)和均方根误差(RMSE = 41.15)的高斯和均匀传感器分布的K驱动器数量,r = 0.79和r = 0.79和RMSE = 48.36。此外,提出的方法在准确性和计算时间复杂性方面优于其他基准算法。
translated by 谷歌翻译
建模是什么使广告有说服力的原因,即引起消费者的所需响应,对于宣传,社会心理学和营销的研究至关重要。尽管其重要性,但计算机视觉中说服力的计算建模仍处于起步阶段,这主要是由于缺乏可以提供与ADS相关的说服力标签的基准数据集。由社会心理学和市场营销中的说服文学的激励,我们引入了广泛的说服策略词汇,并建立了用说服策略注释的第一个AD图像语料库。然后,我们通过多模式学习制定说服策略预测的任务,在该任务中,我们设计了一个多任务注意融合模型,该模型可以利用其他广告理解的任务来预测说服策略。此外,我们对30家财富500家公司的1600个广告活动进行了真实的案例研究,我们使用模型的预测来分析哪些策略与不同的人口统计学(年龄和性别)一起使用。该数据集还提供图像分割掩码,该蒙版在测试拆分上标记了相应的AD图像中的说服力策略。我们公开发布代码和数据集https://midas-research.github.io/persuasion-avertisements/。
translated by 谷歌翻译