大多数现有的时间序列分类(TSC)模型缺乏可解释性,难以检查。可解释的机器学习模型可以帮助发现数据中的模式,并为域专家提供易于理解的见解。在这项研究中,我们提出了神经符号时间序列分类(NSTSC),这是一种利用信号时间逻辑(STL)和神经网络(NN)的神经符号模型,使用多视图数据表示并将模型表示为TSC任务人类可读,可解释的公式。在NSTSC中,每个神经元与符号表达相关,即STL(sub)公式。因此,NSTSC的输出可以解释为类似于自然语言的STL公式,描述了隐藏在数据中的时间和逻辑关系。我们提出了一个基于NSTSC的分类器,该分类器采用决策树方法来学习公式结构并完成多类TSC任务。 WSTL提出的平滑激活功能允许以端到端的方式学习模型。我们在来自UCR时间序列存储库中的小鼠和基准数据集的现实伤口愈合数据集上测试NSTSC,这表明NSTSC与最先进的模型实现了可比的性能。此外,NSTSC可以生成与域知识匹配的可解释公式。
translated by 谷歌翻译