重要性采样(IS)是一种使用来自建议分布和相关重要性权重的独立样本在目标分布下近似期望的方法。在许多应用中,只有直到归一化常数才知道目标分布,在这种情况下,可以使用自称为(SNIS)。虽然自我正态化的使用可能会对估计量的分散产生积极影响,但它引入了偏见。在这项工作中,我们提出了一种新方法BR-SNIS,其复杂性与SNI的复杂性基本相同,并且显着降低了偏见而不增加差异。这种方法是一种包装器,从某种意义上说,它使用了与SNIS相同的建议样本和重要性权重,但巧妙地使用了迭代采样(ISIR)重新采样(ISIR)来形成估算器的偏置版本。我们为提出的算法提供了严格的理论结果,包括新的偏见,方差和高概率界限,这些算法由数值示例进行了说明。
translated by 谷歌翻译
我们开发了一个探索漏洞利用马尔可夫链Monte Carlo算法($ \ OperatorName {ex ^ 2mcmc} $),它结合了多个全局提议和本地移动。所提出的方法是巨大的平行化和极其计算的高效。我们证明$ \ operatorname {ex ^ 2mcmc} $下的$ v $ v $ -unique几何ergodicity在现实条件下,并计算混合速率的显式界限,显示多个全局移动带来的改进。我们展示$ \ operatorname {ex ^ 2mcmc} $允许通过提出依赖全局移动的新方法进行微调剥削(本地移动)和探索(全球移动)。最后,我们开发了一个自适应方案,$ \ OperatorName {Flex ^ 2mcmc} $,它学习使用归一化流的全局动作的分布。我们说明了许多经典采样基准测试的$ \ OperatorName {ex ^ 2mccmc} $及其自适应版本的效率。我们还表明,这些算法提高了对基于能量的模型的抽样GAN的质量。
translated by 谷歌翻译
Out-of-distribution (OOD) generalisation aims to build a model that can well generalise its learnt knowledge from source domains to an unseen target domain. However, current image classification models often perform poorly in the OOD setting due to statistically spurious correlations learning from model training. From causality-based perspective, we formulate the data generation process in OOD image classification using a causal graph. On this graph, we show that prediction P(Y|X) of a label Y given an image X in statistical learning is formed by both causal effect P(Y|do(X)) and spurious effects caused by confounding features (e.g., background). Since the spurious features are domain-variant, the prediction P(Y|X) becomes unstable on unseen domains. In this paper, we propose to mitigate the spurious effect of confounders using front-door adjustment. In our method, the mediator variable is hypothesized as semantic features that are essential to determine a label for an image. Inspired by capability of style transfer in image generation, we interpret the combination of the mediator variable with different generated images in the front-door formula and propose novel algorithms to estimate it. Extensive experimental results on widely used benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
Indonesia holds the second-highest-ranking country for the highest number of malaria cases in Southeast Asia. A different malaria parasite semantic segmentation technique based on a deep learning approach is an alternative to reduce the limitations of traditional methods. However, the main problem of the semantic segmentation technique is raised since large parasites are dominant, and the tiny parasites are suppressed. In addition, the amount and variance of data are important influences in establishing their models. In this study, we conduct two contributions. First, we collect 559 microscopic images containing 691 malaria parasites of thin blood smears. The dataset is named PlasmoID, and most data comes from rural Indonesia. PlasmoID also provides ground truth for parasite detection and segmentation purposes. Second, this study proposes a malaria parasite segmentation and detection scheme by combining Faster RCNN and a semantic segmentation technique. The proposed scheme has been evaluated on the PlasmoID dataset. It has been compared with recent studies of semantic segmentation techniques, namely UNet, ResFCN-18, DeepLabV3, DeepLabV3plus and ResUNet-18. The result shows that our proposed scheme can improve the segmentation and detection of malaria parasite performance compared to original semantic segmentation techniques.
translated by 谷歌翻译
我们介绍了无界深度神经网络(UDN),这是一个无限深的概率模型,可使其复杂性适应训练数据。 UDN包含一个无限的隐藏层序列,并将无限的先验放在截断L上,该层产生数据的层。给定观测数据集,后UDN提供了无限神经网络参数及其截断的条件分布。我们开发了一种新型的变分推理算法来近似此后部,优化了神经网络权重和截断深度L的分布,而没有任何上限。任意深度的网络权重,并且随着其截断的分布被优化,它会动态创建或删除自由变分参数。 (与启发式搜索的方法不同,该算法仅通过基于梯度的优化来探讨截断的空间。)我们研究了UDN,对真实和合成数据进行了研究。我们发现UDN将其后深度适应数据集的复杂性。它的表现优于类似计算复杂性的标准神经网络;它的表现优于无限深度神经网络的其他方法。
translated by 谷歌翻译
如今,越来越多的数据集已发布针对系统和模型的研究和开发,从而直接比较,解决方案的持续改进以及研究人员参与实验,现实生活数据。但是,尤其是在结构健康监测(SHM)领域中,在许多情况下,新的研究项目具有结构设计和实施,传感器选择和技术推动因素的独特组合,这些组合不符合相关个人研究的配置文学。因此,由于我们没有找到任何相关存储库,因此我们将案例研究中的数据分享到研究界。更具体地说,在本文中,我们提出了一个新颖的时间序列数据集,用于使用陶瓷压电传感器(PZTS)连接到物联网(IOT)设备(IOT)设备的陶瓷压电传感器(PZTS),用于塑料薄板上的撞击检测和本地化,朝着结构性健康监测应用。数据集是从低速,低能冲击事件的实验过程中收集的,该过程包括每个独特的实验至少3个重复,而输入测量值来自放置在板的角落的4个PZT传感器。对于每个重复和传感器,以100 kHz的采样率存储5000个值。该系统用钢球激发,释放的高度从10厘米到20厘米不等。该数据集可在GitHub(https://github.com/smart-objects/impact-events-dataset)中获得。
translated by 谷歌翻译
彼此接触的任何两个物体都会仅仅是由于重力或机械接触而引起的力,例如机器人手臂抓住一个物体,甚至是我们膝关节处的两个骨头之间的接触。自然测量和监视这些接触力的能力允许从仓库管理(基于重量检测错误包装)到机器人技术(使机器人臂的抓地力与人类皮肤一样敏感)和医疗保健(膝关节植入物)的大量应用。设计一个无处不在的力传感器是充满挑战的,该传感器可自然地用于所有这些应用。首先,传感器应足够小,以适合狭窄的空间。接下来,我们不想铺设笨重的电缆来读取传感器的力值。最后,我们需要进行无电池设计以满足体内应用程序。我们开发了WiforCesticker,这是一种无线,无电池,类似贴纸的力传感器,可以在任何表面上都可以无处不在,例如所有仓库包装,机器人手臂和膝关节。 WiforCesticker首先设计一个$ 4 $ 〜mm〜 $ \ $ \ times $〜$〜$ 2 $ 〜mm〜 $ \ $ \ times $〜$〜$〜$ 0.4 $〜毫米电容传感器设计,配备了$ 10 $〜$〜$〜$〜$〜$〜$〜$ 〜mm〜mm 〜mm 〜mm 〜mm在灵活的PCB基材上设计。其次,它引入了一种新的机制,可以通过将传感器与COTS RFID系统插入传感器,从而无线读取器无线读取器可以通过无线读取器读取力信息。该传感器可以在多个测试环境中检测到$ 0 $ -6 $ 〜n的力量,感应精度为$ <0.5 $ 〜n,并在传感器上使用超过10,000美元的$ 10,000 $变化的力级按下。我们还通过设计传感器展示了两个应用程序案例研究,称量仓库包和骨接头施加的传感力。
translated by 谷歌翻译
大多数现有的时间序列分类(TSC)模型缺乏可解释性,难以检查。可解释的机器学习模型可以帮助发现数据中的模式,并为域专家提供易于理解的见解。在这项研究中,我们提出了神经符号时间序列分类(NSTSC),这是一种利用信号时间逻辑(STL)和神经网络(NN)的神经符号模型,使用多视图数据表示并将模型表示为TSC任务人类可读,可解释的公式。在NSTSC中,每个神经元与符号表达相关,即STL(sub)公式。因此,NSTSC的输出可以解释为类似于自然语言的STL公式,描述了隐藏在数据中的时间和逻辑关系。我们提出了一个基于NSTSC的分类器,该分类器采用决策树方法来学习公式结构并完成多类TSC任务。 WSTL提出的平滑激活功能允许以端到端的方式学习模型。我们在来自UCR时间序列存储库中的小鼠和基准数据集的现实伤口愈合数据集上测试NSTSC,这表明NSTSC与最先进的模型实现了可比的性能。此外,NSTSC可以生成与域知识匹配的可解释公式。
translated by 谷歌翻译
资源说明框架(RDF)和属性图(PG)是表示,存储和查询图数据的两个最常用的数据模型。我们提出了表达推理图存储(ERGS) - 构建在Janusgraph(属性图存储)顶部的图存储,该图还允许存储和查询RDF数据集。首先,我们描述了如何将RDF数据转换为属性图表示,然后描述将SPARQL查询转换为一系列Gremlin遍历的查询翻译模块。因此,开发的转换器和翻译器可以允许任何Apache TinkerPop符合图形数据库存储和查询RDF数据集。我们证明了使用JanusGraph作为基本属性图存储的建议方法的有效性,并将其性能与标准RDF系统进行比较。
translated by 谷歌翻译
检测条件独立性在几个统计和机器学习任务中起着关键作用,尤其是在因果发现算法中。在这项研究中,我们介绍了LCIT(基于潜在的条件独立性检验) - 一种基于表示学习的有条件独立性测试的新型非参数方法。我们的主要贡献涉及提出一个生成框架,在该框架中测试X和Y之间的独立性,我们首先学会推断目标变量X和Y的潜在表示,该代表不包含有关条件变量Z的信息。潜在变量是然后研究了任何剩余的显着依赖性,可以使用常规的部分相关测试进行。经验评估表明,在不同的评估指标下,LCIT始终超过几个最先进的基线,并且能够很好地适应非线性和高维度的各种合成和真实数据集的集合。
translated by 谷歌翻译