从不同扫描仪/部位的有丝分裂数字的检测仍然是研究的重要主题,这是由于其潜力协助临床医生进行肿瘤分级。有丝分裂结构域的概括(MIDOG)2022挑战旨在测试从多种扫描仪和该任务的多种扫描仪和组织类型中看不见数据的检测模型的鲁棒性。我们提供了TIA中心团队采用的方法来应对这一挑战的简短摘要。我们的方法基于混合检测模型,在该模型中,在该模型中进行了有丝分裂候选者,然后被深度学习分类器精炼。在训练图像上的交叉验证在初步测试集上达到了0.816和0.784的F1得分,这证明了我们模型可以从新扫描仪中看不见的数据的普遍性。
translated by 谷歌翻译
肿瘤浸润淋巴细胞(TIL)的定量已被证明是乳腺癌患者预后的独立预测因子。通常,病理学家对含有tils的基质区域的比例进行估计,以获得TILS评分。乳腺癌(Tiger)挑战中肿瘤浸润淋巴细胞旨在评估计算机生成的TILS评分的预后意义,以预测作为COX比例风险模型的一部分的存活率。在这一挑战中,作为Tiager团队,我们已经开发了一种算法,以将肿瘤与基质与基质进行第一部分,然后将肿瘤散装区域用于TILS检测。最后,我们使用这些输出来生成每种情况的TILS分数。在初步测试中,我们的方法达到了肿瘤 - 细胞瘤的加权骰子评分为0.791,而淋巴细胞检测的FROC得分为0.572。为了预测生存,我们的模型达到了0.719的C索引。这些结果在老虎挑战的初步测试排行榜中获得了第一名。
translated by 谷歌翻译
口腔上皮发育不良(OED)是对口腔的病变给出的恶性肿瘤性组织病理学诊断。预测OED等级或情况是否将转型给恶性肿瘤对于早期检测和适当的治疗至关重要。 OED通常从上皮的下三分之一开始,然后以等级的严重程度向上逐步开始,因此我们提出了分割上皮层,除了单独的细胞核之外,还可以使研究人员能够评估级别/恶性预测的重要层种形态特征。我们呈现悬停网+,深度学习框架,以同时分段(和分类)核和(内部)在H&E染色的载玻片中的核和(内)上皮层。所提出的架构由编码器分支和四个解码器分支组成,用于同时对上皮层的核和语义分割的同时分段。我们表明,拟议的模型在两个任务中实现了最先进的(SOTA)性能,而与每个任务的先前的SOTA方法相比,没有额外的成本。据我们所知,我们的是同时核实例分割和语义组织分割的第一种方法,具有用于其他类似同时任务的计算病理和对恶性预测的研究。
translated by 谷歌翻译
A Digital Twin (DT) is a simulation of a physical system that provides information to make decisions that add economic, social or commercial value. The behaviour of a physical system changes over time, a DT must therefore be continually updated with data from the physical systems to reflect its changing behaviour. For resource-constrained systems, updating a DT is non-trivial because of challenges such as on-board learning and the off-board data transfer. This paper presents a framework for updating data-driven DTs of resource-constrained systems geared towards system health monitoring. The proposed solution consists of: (1) an on-board system running a light-weight DT allowing the prioritisation and parsimonious transfer of data generated by the physical system; and (2) off-board robust updating of the DT and detection of anomalous behaviours. Two case studies are considered using a production gas turbine engine system to demonstrate the digital representation accuracy for real-world, time-varying physical systems.
translated by 谷歌翻译
Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles and robots. Existing approaches to detect OOD samples treat a DNN as a black box and assess the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNN are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU based architectures. The proposed method does not introduce high computational workload due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets. ion.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we propose an alternative approach to overcome these structural limitations by leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new class of GNNs, called Graph MLP-Mixer, that holds three key properties. First, they capture long-range dependency and mitigate the issue of over-squashing as demonstrated on the Long Range Graph Benchmark (LRGB) and the TreeNeighbourMatch datasets. Second, they offer better speed and memory efficiency with a complexity linear to the number of nodes and edges, surpassing the related Graph Transformer and expressive GNN models. Third, they show high expressivity in terms of graph isomorphism as they can distinguish at least 3-WL non-isomorphic graphs. We test our architecture on 4 simulated datasets and 7 real-world benchmarks, and show highly competitive results on all of them.
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
In the recent years, various gradient descent algorithms including the methods of gradient descent, gradient descent with momentum, adaptive gradient (AdaGrad), root-mean-square propagation (RMSProp) and adaptive moment estimation (Adam) have been applied to the parameter optimization of several deep learning models with higher accuracies or lower errors. These optimization algorithms may need to set the values of several hyperparameters which include a learning rate, momentum coefficients, etc. Furthermore, the convergence speed and solution accuracy may be influenced by the values of hyperparameters. Therefore, this study proposes an analytical framework to use mathematical models for analyzing the mean error of each objective function based on various gradient descent algorithms. Moreover, the suitable value of each hyperparameter could be determined by minimizing the mean error. The principles of hyperparameter value setting have been generalized based on analysis results for model optimization. The experimental results show that higher efficiency convergences and lower errors can be obtained by the proposed method.
translated by 谷歌翻译
Managing novelty in perception-based human activity recognition (HAR) is critical in realistic settings to improve task performance over time and ensure solution generalization outside of prior seen samples. Novelty manifests in HAR as unseen samples, activities, objects, environments, and sensor changes, among other ways. Novelty may be task-relevant, such as a new class or new features, or task-irrelevant resulting in nuisance novelty, such as never before seen noise, blur, or distorted video recordings. To perform HAR optimally, algorithmic solutions must be tolerant to nuisance novelty, and learn over time in the face of novelty. This paper 1) formalizes the definition of novelty in HAR building upon the prior definition of novelty in classification tasks, 2) proposes an incremental open world learning (OWL) protocol and applies it to the Kinetics datasets to generate a new benchmark KOWL-718, 3) analyzes the performance of current state-of-the-art HAR models when novelty is introduced over time, 4) provides a containerized and packaged pipeline for reproducing the OWL protocol and for modifying for any future updates to Kinetics. The experimental analysis includes an ablation study of how the different models perform under various conditions as annotated by Kinetics-AVA. The protocol as an algorithm for reproducing experiments using the KOWL-718 benchmark will be publicly released with code and containers at https://github.com/prijatelj/human-activity-recognition-in-an-open-world. The code may be used to analyze different annotations and subsets of the Kinetics datasets in an incremental open world fashion, as well as be extended as further updates to Kinetics are released.
translated by 谷歌翻译