我们提出了一种新颖的轨迹遍历性估计和计划在复杂室外环境中机器人导航的算法。我们将RGB摄像头,3D LIDAR和机器人的探针传感器中的多模式感觉输入结合在一起,以训练预测模型,以估算基于部分可靠的多模式传感器观测值的候选轨迹轨迹的成功概率。我们使用编码器网络对低维特征向量编码高维多模式的感觉输入,并将它们表示为连接的图形,以训练基于注意力的图形神经网络(GNN)模型,以预测轨迹成功概率。我们进一步分别分析图像和点云数据,以量化传感器的可靠性,以增强我们GNN中使用的特征图表示的权重。在运行时,我们的模型利用多传感器输入来预测本地规划师生成的轨迹的成功概率,以避免潜在的碰撞和故障。当一个或多个传感器模态在复杂的室外环境中不可靠或不可用时,我们的算法证明了可靠的预测。我们使用现实世界中户外环境中的点机器人评估算法的导航性能。
translated by 谷歌翻译
我们提出了一种新的方法,以改善基于深入强化学习(DRL)的室外机器人导航系统的性能。大多数现有的DRL方法基于精心设计的密集奖励功能,这些功能可以学习环境中的有效行为。我们仅通过稀疏的奖励(易于设计)来解决这个问题,并提出了一种新颖的自适应重尾增强算法,用于户外导航,称为Htron。我们的主要思想是利用重尾政策参数化,这些参数隐含在稀疏的奖励环境中引起探索。我们在三种不同的室外场景中评估了针对钢琴,PPO和TRPO算法的htron的性能:进球,避免障碍和地形导航不均匀。我们平均观察到成功率的平均增加了34.41%,与其他方法相比,与其他方法获得的导航政策相比,为达到目标的平均时间步骤下降了15.15%,高程成本下降了24.9%。此外,我们证明我们的算法可以直接转移到Clearpath Husky机器人中,以在现实情况下进行户外地形导航。
translated by 谷歌翻译
我们提出了Terrapn,这是一种新颖的方法,它可以通过自我监督的学习直接从机器人 - 泰林相互作用中了解复杂室外地形的表面特性(牵引力,颠簸,可变形等),并将其用于自动驾驶机器人导航。我们的方法使用地形表面和机器人的速度的RGB图像作为输入,以及机器人作为自我选择的标签所经历的IMU振动和探测错误。我们的方法计算了一个表面成本图,该图将平滑,高吸收表面(低导航成本)与颠簸,滑水,可变形表面(高导航成本)区分开。我们通过检测表面之间的边界来计算从输入RGB图像的非均匀采样贴片来计算成本图,从而与均匀的采样和现有分割方法相比,导致推理时间较低(低47.27%)。我们提出了一种新颖的导航算法,该算法可以说明表面成本,计算机器人的基于成本的加速度限制以及动态可行的无碰撞轨迹。 Terrapn的表面成本预测可以在约25分钟内进行五个不同的表面进行训练,而先前基于学习的分割方法数小时。在导航方面,我们的方法在成功率(高达35.84%),轨迹的振动成本(降低21.52%)方面优于先前的工作,并在颠簸,可变形的表面上放慢机器人(最高46.76%)在不同的情况下较慢)。
translated by 谷歌翻译
我们提出了GANAV,这是一种新颖的小组注意机制,可以从RGB图像中识别出越野地形和非结构化环境中的安全和可通道的区域。我们的方法根据其可通道的语义分割根据其可通道水平对地形进行了分类。我们新颖的小组注意力损失使任何骨干网络都能明确关注具有低空间分辨率的不同组的特征。与现有的SOTA方法相比,我们的设计可提供有效的推断,同时保持高度的准确性。我们对RUGD和Rellis-3D数据集的广泛评估表明,GANAV在RUGD上的改善对SOTA MIOU的改善增长了2.25-39.05%,Rellis-3d的RUGD提高了5.17-19.06%。我们与Ganav进行了深入的增强基于学习的导航算法的接口,并在现实世界中的非结构化地形中突出了其在导航方面的好处。我们将基于GANAV的导航算法与ClearPath Jackal和Husky Robots集成在一起,并观察到成功率增加了10%,在选择表面最佳的可通道性和4.6-13.9%的表面方面为2-47%在轨迹粗糙度中。此外,加纳夫将禁区的假阳性降低37.79%。代码,视频和完整的技术报告可在https://gamma.umd.edu/offroad/上找到。
translated by 谷歌翻译
Automation in farming processes is a growing field of research in both academia and industries. A considerable amount of work has been put into this field to develop systems robust enough for farming. Terrace farming, in particular, provides a varying set of challenges, including robust stair climbing methods and stable navigation in unstructured terrains. We propose the design of a novel autonomous terrace farming robot, Aarohi, that can effectively climb steep terraces of considerable heights and execute several farming operations. The design optimisation strategy for the overall mechanical structure is elucidated. Further, the embedded and software architecture along with fail-safe strategies are presented for a working prototype. Algorithms for autonomous traversal over the terrace steps using the scissor lift mechanism and performing various farming operations have also been discussed. The adaptability of the design to specific operational requirements and modular farm tools allow Aarohi to be customised for a wide variety of use cases.
translated by 谷歌翻译
Neural network-based approaches for solving partial differential equations (PDEs) have recently received special attention. However, the large majority of neural PDE solvers only apply to rectilinear domains, and do not systematically address the imposition of Dirichlet/Neumann boundary conditions over irregular domain boundaries. In this paper, we present a framework to neurally solve partial differential equations over domains with irregularly shaped (non-rectilinear) geometric boundaries. Our network takes in the shape of the domain as an input (represented using an unstructured point cloud, or any other parametric representation such as Non-Uniform Rational B-Splines) and is able to generalize to novel (unseen) irregular domains; the key technical ingredient to realizing this model is a novel approach for identifying the interior and exterior of the computational grid in a differentiable manner. We also perform a careful error analysis which reveals theoretical insights into several sources of error incurred in the model-building process. Finally, we showcase a wide variety of applications, along with favorable comparisons with ground truth solutions.
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
无人驾驶飞机在当天变得越来越流行,对它们的申请越过科学和工业的界限,从航空摄影到包装交付再到灾难管理,从该技术中受益。但是在它们变得司空见惯之前,要解决的挑战要使它们可靠和安全。以下论文讨论了与无人驾驶飞机的精确着陆相关的挑战,包括传感和控制的方法及其在各种应用中的优点和缺点。
translated by 谷歌翻译
随着无人机技术的改进,从监视到航空摄影再到包装交付的这些多功能自动驾驶汽车,已经发现了越来越多的用途,并且这些应用都带来了独特的挑战。本文实施了一个这样一个挑战的解决方案:降落在移动目标上。此问题以前已经通过不同程度的成功解决了,但是大多数实施都集中在室内应用程序上。室外以风和照明等变量的形式提出了更大的挑战,室外无人机更重,更容易受到惯性效应的影响。我们的方法纯粹是基于视觉的,使用单眼摄像机和基准标记来定位无人机和PID控制,以跟随和降落在平台上。
translated by 谷歌翻译
基于事件的摄像机最近由于其不同步捕获时间丰富的信息的能力而显示出高速运动估计的巨大潜力。具有神经启发的事件驱动的处理的尖峰神经网络(SNN)可以有效地处理异步数据,而神经元模型(例如泄漏的综合和火灾(LIF))可以跟踪输入中包含的典型时序信息。 SNN通过在神经元内存中保持动态状态,保留重要信息,同时忘记冗余数据随着时间的推移而实现这一目标。因此,我们认为,与类似大小的模拟神经网络(ANN)相比,SNN将允许在顺序回归任务上更好地性能。但是,由于以后的层消失了,很难训练深SNN。为此,我们提出了一个具有可学习的神经元动力学的自适应完全刺激框架,以减轻尖峰消失的问题。我们在时间(BPTT)中利用基于替代梯度的反向传播来从头开始训练我们的深SNN。我们验证了在多车立体化事件相机(MVSEC)数据集和DSEC-FLOW数据集中的光流估计任务的方法。我们在这些数据集上的实验显示,与最新的ANN相比,平均终点误差(AEE)平均降低了13%。我们还探索了几个缩小的模型,并观察到我们的SNN模型始终超过大小的ANN,提供10%-16%的AEE。这些结果证明了SNN对较小模型的重要性及其在边缘的适用性。在效率方面,与最先进的ANN实施相比,我们的SNN可节省大量的网络参数(48倍)和计算能(51倍),同时获得了〜10%的EPE。
translated by 谷歌翻译