优化组合结构是许多现实世界中的核心,例如生命科学中遇到的问题。例如,抗体设计中涉及的关键步骤之一是在蛋白质序列中找到氨基酸的排列,以改善其与病原体的结合。由于极大的搜索空间和非线性目标,很难对抗体进行组合优化。即使对于适度的抗体设计问题,蛋白质的序列长度为11,我们也面临着超过2.05 x 10^14结构的搜索。应用传统的增强学习算法,例如Q-学习算法来组合优化,导致性能差。我们提出了结构化Q学习(SQL),这是Q学习的扩展,该Q学习结合了结构性先验,以进行组合优化。使用分子对接模拟器,我们证明了SQL可以找到高结合能序列,并在八个具有挑战性的抗体设计任务上对基准的表现良好,包括设计SARS-COV的抗体。
translated by 谷歌翻译