Deep neural networks (DNNs) have rapidly become a \textit{de facto} choice for medical image understanding tasks. However, DNNs are notoriously fragile to the class imbalance in image classification. We further point out that such imbalance fragility can be amplified when it comes to more sophisticated tasks such as pathology localization, as imbalances in such problems can have highly complex and often implicit forms of presence. For example, different pathology can have different sizes or colors (w.r.t.the background), different underlying demographic distributions, and in general different difficulty levels to recognize, even in a meticulously curated balanced distribution of training data. In this paper, we propose to use pruning to automatically and adaptively identify \textit{hard-to-learn} (HTL) training samples, and improve pathology localization by attending them explicitly, during training in \textit{supervised, semi-supervised, and weakly-supervised} settings. Our main inspiration is drawn from the recent finding that deep classification models have difficult-to-memorize samples and those may be effectively exposed through network pruning \cite{hooker2019compressed} - and we extend such observation beyond classification for the first time. We also present an interesting demographic analysis which illustrates HTLs ability to capture complex demographic imbalances. Our extensive experiments on the Skin Lesion Localization task in multiple training settings by paying additional attention to HTLs show significant improvement of localization performance by $\sim$2-3\%.
translated by 谷歌翻译
AI-powered Medical Imaging has recently achieved enormous attention due to its ability to provide fast-paced healthcare diagnoses. However, it usually suffers from a lack of high-quality datasets due to high annotation cost, inter-observer variability, human annotator error, and errors in computer-generated labels. Deep learning models trained on noisy labelled datasets are sensitive to the noise type and lead to less generalization on the unseen samples. To address this challenge, we propose a Robust Stochastic Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information. More specifically, RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data. Our extensive experiments on popular medical imaging classification tasks (cardiopulmonary disease and lesion classification) using real-world datasets, show the performance benefit of RoS-KD, its ability to distill knowledge from many popular large networks (ResNet-50, DenseNet-121, MobileNet-V2) in a comparatively small network, and its robustness to adversarial attacks (PGD, FSGM). More specifically, RoS-KD achieves >2% and >4% improvement on F1-score for lesion classification and cardiopulmonary disease classification tasks, respectively, when the underlying student is ResNet-18 against recent competitive knowledge distillation baseline. Additionally, on cardiopulmonary disease classification task, RoS-KD outperforms most of the SOTA baselines by ~1% gain in AUC score.
translated by 谷歌翻译
已知大气湍流的图像恢复算法对设计比模糊或噪声等传统湍流更具挑战性,因为湍流引起的失真是空间变化的模糊,几何变形,传感器噪声的纠缠。现有的基于CNN的恢复方法建立在具有静态重量的卷积内核上,不足以处理空间动态的大气湍流效果。为了解决这个问题,在本文中,我们提出了一个以物理启发的变压器模型,用于通过大气湍流进行成像。提出的网络利用变压器块的功率共同提取动态湍流失真图并恢复无湍流图像。此外,我们认识到缺乏全面的数据集,我们收集并介绍了两个新的现实世界湍流数据集,这些数据集允许使用经典目标指标(例如PSNR和SSIM)进行评估,并使用文本识别精度进行了新的任务驱动指标。实际测试集和所有相关代码都将公开可用。
translated by 谷歌翻译
Pruning large neural networks to create highquality, independently trainable sparse masks, which can maintain similar performance to their dense counterparts, is very desirable due to the reduced space and time complexity. As research effort is focused on increasingly sophisticated pruning methods that leads to sparse subnetworks trainable from the scratch, we argue for an orthogonal, under-explored theme: improving training techniques for pruned sub-networks, i.e. sparse training. Apart from the popular belief that only the quality of sparse masks matters for sparse training, in this paper we demonstrate an alternative opportunity: one can carefully customize the sparse training techniques to deviate from the default dense network training protocols, consisting of introducing "ghost" neurons and skip connections at the early stage of training, and strategically modifying the initialization as well as labels. Our new sparse training recipe is generally applicable to improving training from scratch with various sparse masks. By adopting our newly curated techniques, we demonstrate significant performance gains across various popular datasets (CIFAR-10, CIFAR-100, TinyIma-geNet), architectures (ResNet-18/32/104, Vgg16, MobileNet), and sparse mask options (lottery ticket, SNIP/GRASP, SynFlow, or even randomly pruning), compared to the default training protocols, especially at high sparsity levels. Code is at https://github.com/VITA-Group/ToST.
translated by 谷歌翻译
放射学报告是非结构化的,并包含由放射科医生转录的成像发现和相应的诊断,包括临床事实和否定和/或不确定的陈述。从放射学报告中提取病理发现和诊断对于质量控制,人口健康和监测疾病进展至关重要。现有的作品,主要依赖于基于规则的系统或基于变压器的预训练模型微调,但不能考虑事实和不确定的信息,因此产生假阳性输出。在这项工作中,我们介绍了三种宗旨的增强技术,在产生了对比学习的增强时保留了事实和关键信息。我们介绍了Radbert-Cl,通过自我监督的对比损失将这些信息融入蓝莓。我们对MIMIC-CXR的实验显示了RADBERT-CL在多级多标签报告分类的微调上的卓越性能。我们说明,当有很少有标记的数据时,Radbert-Cl以常规的SOTA变压器(BERT / Bluebert)优于更大的边缘(6-11%)。我们还表明,Radbert-CL学习的表示可以在潜伏空间中捕获关键的医疗信息。
translated by 谷歌翻译
Applying Machine learning to domains like Earth Sciences is impeded by the lack of labeled data, despite a large corpus of raw data available in such domains. For instance, training a wildfire classifier on satellite imagery requires curating a massive and diverse dataset, which is an expensive and time-consuming process that can span from weeks to months. Searching for relevant examples in over 40 petabytes of unlabelled data requires researchers to manually hunt for such images, much like finding a needle in a haystack. We present a no-code end-to-end pipeline, Curator, which dramatically minimizes the time taken to curate an exhaustive labeled dataset. Curator is able to search massive amounts of unlabelled data by combining self-supervision, scalable nearest neighbor search, and active learning to learn and differentiate image representations. The pipeline can also be readily applied to solve problems across different domains. Overall, the pipeline makes it practical for researchers to go from just one reference image to a comprehensive dataset in a diminutive span of time.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Due to the high activation sparsity and use of accumulates (AC) instead of expensive multiply-and-accumulates (MAC), neuromorphic spiking neural networks (SNNs) have emerged as a promising low-power alternative to traditional DNNs for several computer vision (CV) applications. However, most existing SNNs require multiple time steps for acceptable inference accuracy, hindering real-time deployment and increasing spiking activity and, consequently, energy consumption. Recent works proposed direct encoding that directly feeds the analog pixel values in the first layer of the SNN in order to significantly reduce the number of time steps. Although the overhead for the first layer MACs with direct encoding is negligible for deep SNNs and the CV processing is efficient using SNNs, the data transfer between the image sensors and the downstream processing costs significant bandwidth and may dominate the total energy. To mitigate this concern, we propose an in-sensor computing hardware-software co-design framework for SNNs targeting image recognition tasks. Our approach reduces the bandwidth between sensing and processing by 12-96x and the resulting total energy by 2.32x compared to traditional CV processing, with a 3.8% reduction in accuracy on ImageNet.
translated by 谷歌翻译
Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average $\approx$ 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines.
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译