抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
我们介绍了速度地图的概念:人类环境中移动机器人的速度限制。静态速度图允许在走廊上更快地导航,同时限制在角落和房间周围的速度。动态速度图限制了人类的速度。我们展示了一个移动机器人的概念,指导人们在地图上注释地标。机器人可保持导航和语义地图的公制地图,以保持平面曲面进行任务。该系统在检测到专门设计的QR码时支持自动初始化。我们表明速度贴图不仅可以降低潜在碰撞的影响,而且还可以降低导航时间。
translated by 谷歌翻译
人类在交流何时和何时发生的何时和何处的意图方面非常熟练。但是,即使是最先进的机器人实现,通常缺乏这种交流技巧。这项研究调查了使用增强现实的机器人内部状态的可视化和对人向机器人移交的意图。具体而言,我们探讨了对象和机器人抓手的可视化3D模型的使用,以传达机器人对物体所在位置的估计以及机器人打算掌握对象的姿势。我们通过16名参与者的用户研究测试了这一设计,其中每个参与者将一个立方体对象交给机器人12次。结果表明,通过增强现实的通信机器人意图基本上改善了用户对移交的感知体验。结果还表明,当机器人在定位对象时犯错时,增强现实的有效性对于相互作用的安全性和交互的流利性更加明显。
translated by 谷歌翻译
美国国防高级研究项目局(DARPA)地下挑战需要机器人团队跨越困难和多样化的地下环境。遍历小缺口是机器人遇到的具有挑战性的情景之一。不完美的传感器信息使古典导航方法难以,行为需要重大手动微调。在本文中,我们介绍了一种深度加强学习方法,用于通过小间隙自动导航,其中机器人与间隙之间的接触可能需要。我们首先要学习一个差距行为政策,以通过小差距(仅厘米宽于机器人)。然后,我们学习一个目标条件的行为选择策略,确定何时激活GAP行为策略。我们培训我们的模拟政策,并展示其在仿真和真实平台上的大型跟踪机器人的效力。在仿真实验中,当通过操作员手动激活间隙行为时,我们的方法实现了93 \%的成功率,并使用行为选择策略自主激活63 \%。在真正的机器人实验中,我们的方法通过手动激活实现了73 \%的成功率,并且具有自主行为选择的40 \%。虽然我们展示了我们在模拟中的方法的可行性,但模拟和现实世界情景之间的性能差异突出了直接SIM-TO-REAT转移为深度加强学习政策的难度。在模拟和现实世界环境中,替代方法无法遍历间隙。
translated by 谷歌翻译
本文对人机对象切换的文献进行了调查。切换是一种协作的关节动作,其中代理人,给予者,给予对象给另一代理,接收器。当接收器首先与给予者持有的对象并结束时,当给予者完全将物体释放到接收器时,物理交换开始。然而,重要的认知和物理过程在物理交换之前开始,包括在交换的位置和时间内启动隐含协议。从这个角度来看,我们将审核构成了上述事件界定的两个主要阶段:1)预切换阶段和2)物理交流。我们专注于两位演员(Giver和Receiver)的分析,并报告机器人推动者(机器人到人类切换)和机器人接收器(人到机器人切换)的状态。我们举报了常用于评估互动的全面的定性和定量度量列表。虽然将我们的认知水平(例如,预测,感知,运动规划,学习)和物理水平(例如,运动,抓握,抓取释放)的审查重点,但我们简要讨论了安全的概念,社会背景,和人体工程学。我们将在人对人物助手中显示的行为与机器人助手的最新进行比较,并确定机器人助剂的主要改善领域,以达到与人类相互作用相当的性能。最后,我们提出了一种应使用的最小度量标准,以便在方法之间进行公平比较。
translated by 谷歌翻译
对于在城市环境中导航的自主机器人,对于机器人而言,要保持在指定的旅行路径(即小径),并避免使用诸如草和花园床之类的区域,以确保安全和社会符合性考虑因素。本文为未知的城市环境提供了一种自主导航方法,该方法结合了语义分割和激光雷达数据的使用。所提出的方法使用分段的图像掩码创建环境的3D障碍物图,从中计算了人行道的边界。与现有方法相比,我们的方法不需要预先建造的地图,并提供了对安全区域的3D理解,从而使机器人能够计划通过人行道的任何路径。将我们的方法与仅使用LiDAR或仅使用语义分割的两种替代方案进行比较的实验表明,总体而言,我们所提出的方法在户外的成功率大于91%的成功率,并且在室内大于66%。我们的方法使机器人始终保持在安全的旅行道路上,并减少了碰撞数量。
translated by 谷歌翻译