对于监督分类问题,本文考虑通过使用观察到的协变量来估算查询的标签概率。众所周知的非参数内核更顺畅,并在查询周围的球上占据平均值的$ k $-n $-nnn)估算器,但特别是对于球的大半径偏向而渐近偏差。消除这种偏差,本地多项式回归(LPOR)和Multiscale $ K $ -NN(MS-$ K $ -NN)通过围绕查询周围的本地回归来学习偏置术语并将其推断给查询本身。然而,他们的理论最优性已经显示为无限数量的训练样本的限制。为了纠正具有较少观察的渐近偏差,本文提出了一种局部径向回归(LRR)及其逻辑回归变量,称为局部径向逻辑回归(LRLR),通过结合LPOS和MS-$ K $ -NN的优点。这个想法很简单:通过将径向距离作为解释变量将径向距离施加到观察标签的本地回归,然后将估计的标记概率推断为零距离。我们的数值实验包括日常股票指数的现实世界数据集,证明了LRLR胜过LPOR和MS $ K $ -NN。
translated by 谷歌翻译