Named Entity Recognition (NER) is an important and well-studied task in natural language processing. The classic CoNLL-2003 English dataset, published almost 20 years ago, is commonly used to train and evaluate named entity taggers. The age of this dataset raises the question of how well these models perform when applied to modern data. In this paper, we present CoNLL++, a new annotated test set that mimics the process used to create the original CoNLL-2003 test set as closely as possible, except with data collected from 2020. Using CoNLL++, we evaluate the generalization of 20+ different models to modern data. We observe that different models have very different generalization behavior. F\textsubscript{1} scores of large transformer-based models which are pre-trained on recent data dropped much less than models using static word embeddings, and RoBERTa-based and T5 models achieve comparable F\textsubscript{1} scores on both CoNLL-2003 and CoNLL++. Our experiments show that achieving good generalizability requires a combined effort of developing larger models and continuing pre-training with in-domain and recent data. These results suggest standard evaluation methodology may have under-estimated progress on named entity recognition over the past 20 years; in addition to improving performance on the original CoNLL-2003 dataset, we have also improved the ability of our models to generalize to modern data.
translated by 谷歌翻译
We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that violate relevant policies. Our approach extracts structured representations of check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. Using our baseline system, we show that human fact-checkers can identify 124 tweets per hour that violate Twitter's policies on COVID-19 misinformation. We will make our code, data, and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
在本文中,我们介绍了SynkB,这是一种自动提取化学合成方案的知识库。类似于专有化学数据库,例如Reaxsys,SynkB允许化学家检索有关合成程序的结构化知识。通过利用自然语言处理程序文本的最新进展,SynkB支持有关反应条件的更灵活的查询,因此有可能帮助化学家在设计新的合成路线时搜索相关反应中使用的条件。使用定制的变压器模型从美国和欧盟专利中描述的600万个合成程序中自动提取信息,我们表明,在许多查询中,SynkB的召回率高于ReaxSys,同时保持高精度。我们计划使SynkB作为开源工具可用;相反,专有化学数据库需要昂贵的订阅。
translated by 谷歌翻译
最近的工作表明,在适应新域时,域名语言模型可以提高性能。但是,与培训前提出的成本提出了一个重要问题:给出了固定预算,NLP从业者应该采取哪些步骤来最大限度地提高绩效?在本文中,我们在预算限制下研究域适应,并将其作为数据注释和预培训之间的客户选择问题。具体而言,我们测量三个程序文本数据集的注释成本以及三种域语言模型的预培训成本。然后,我们评估不同预算限制下的预训练和数据注释的不同组合的效用,以评估哪种组合策略最佳效果。我们发现,对于小预算,支出所有资金都会导致最佳表现;一旦预算变得足够大,数据注释和域内预训练的组合更优先。因此,我们建议任务特定的数据注释应该是在将NLP模型调整到新域时的经济策略的一部分。
translated by 谷歌翻译
在本文中,我们提出了一个手动注释的10,000名推文载有五个Covid-19事件的公开报告,包括积极和消极的测试,死亡,拒绝获得测试,索赔治愈和预防。我们为每种事件类型设计了插槽填充问题,并注释了总共31个细粒度的插槽,例如事件的位置,最近的旅行和密切联系人。我们表明我们的语料库可以支持微调基于伯特的分类器,以自动提取公共报告的事件,并帮助跟踪新疾病的传播。我们还证明,通过从数百万推文中提取的事件汇总,我们在回答复杂的查询时达到令人惊讶的高精度,例如“哪些组织在费城在费城测试的员工?”我们将释放我们的语料库(使用用户信息被删除),自动提取模型以及研究社区的相应知识库。
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
In this work, we tackle two vital tasks in automated driving systems, i.e., driver intent prediction and risk object identification from egocentric images. Mainly, we investigate the question: what would be good road scene-level representations for these two tasks? We contend that a scene-level representation must capture higher-level semantic and geometric representations of traffic scenes around ego-vehicle while performing actions to their destinations. To this end, we introduce the representation of semantic regions, which are areas where ego-vehicles visit while taking an afforded action (e.g., left-turn at 4-way intersections). We propose to learn scene-level representations via a novel semantic region prediction task and an automatic semantic region labeling algorithm. Extensive evaluations are conducted on the HDD and nuScenes datasets, and the learned representations lead to state-of-the-art performance for driver intention prediction and risk object identification.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
This paper presents a simple and effective visual prompting method for adapting pre-trained models to downstream recognition tasks. Our method includes two key designs. First, rather than directly adding together the prompt and the image, we treat the prompt as an extra and independent learnable component. We show that the strategy of reconciling the prompt and the image matters, and find that warping the prompt around a properly shrinked image empirically works the best. Second, we re-introduce two "old tricks" commonly used in building transferable adversarial examples, i.e., input diversity and gradient normalization, into visual prompting. These techniques improve optimization and enable the prompt to generalize better. We provide extensive experimental results to demonstrate the effectiveness of our method. Using a CLIP model, our prompting method sets a new record of 82.8% average accuracy across 12 popular classification datasets, substantially surpassing the prior art by +5.6%. It is worth noting that this prompting performance already outperforms linear probing by +2.1% and can even match fully fine-tuning in certain datasets. In addition, our prompting method shows competitive performance across different data scales and against distribution shifts. The code is publicly available at https://github.com/UCSC-VLAA/EVP.
translated by 谷歌翻译