深度神经网络需要特定的层来处理点云,因为点的分散和不规则位置使我们无法使用卷积过滤器。在这里,我们介绍了复合层,该复合层是点云的新卷积操作员。我们的复合层的特殊性是,它在将点与其特征向量结合之前从点位置提取和压缩空间信息。与众所周知的点横向跨层相比,我们的复合层提供了额外的正则化,并确保了参数和参数数量方面的灵活性更大。为了展示设计灵活性,我们还定义了一个集合复合层,该复合层以非线性方式组合空间信息和特征,并且我们使用这些层来实现卷积和聚集的综合材料。我们训练我们的复合烯类进行分类,最引人注目的是无监督的异常检测。我们对合成和现实世界数据集的实验表明,在这两个任务中,我们的CompositeNets都优于表现要点,尽管具有更简单的体系结构,但取得了与KPCONV相似的结果。此外,我们的复合烯类基本上优于现有的解决方案,用于点云上的异常检测。
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Explainability is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the topic, yet explainability still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the product of evidence stemming from the model and its input-output and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's decision-making) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are ope rationalized and provide new insight into common explanation methods that we analyze as case studies.
translated by 谷歌翻译
We propose a learning-based methodology to reconstruct private information held by a population of interacting agents in order to predict an exact outcome of the underlying multi-agent interaction process, here identified as a stationary action profile. We envision a scenario where an external observer, endowed with a learning procedure, is allowed to make queries and observe the agents' reactions through private action-reaction mappings, whose collective fixed point corresponds to a stationary profile. By adopting a smart query process to iteratively collect sensible data and update parametric estimates, we establish sufficient conditions to assess the asymptotic properties of the proposed learning-based methodology so that, if convergence happens, it can only be towards a stationary action profile. This fact yields two main consequences: i) learning locally-exact surrogates of the action-reaction mappings allows the external observer to succeed in its prediction task, and ii) working with assumptions so general that a stationary profile is not even guaranteed to exist, the established sufficient conditions hence act also as certificates for the existence of such a desirable profile. Extensive numerical simulations involving typical competitive multi-agent control and decision making problems illustrate the practical effectiveness of the proposed learning-based approach.
translated by 谷歌翻译
Nature-inspired optimization Algorithms (NIOAs) are nowadays a popular choice for community detection in social networks. Community detection problem in social network is treated as optimization problem, where the objective is to either maximize the connection within the community or minimize connections between the communities. To apply NIOAs, either of the two, or both objectives are explored. Since NIOAs mostly exploit randomness in their strategies, it is necessary to analyze their performance for specific applications. In this paper, NIOAs are analyzed on the community detection problem. A direct comparison approach is followed to perform pairwise comparison of NIOAs. The performance is measured in terms of five scores designed based on prasatul matrix and also with average isolability. Three widely used real-world social networks and four NIOAs are considered for analyzing the quality of communities generated by NIOAs.
translated by 谷歌翻译
Deep Reinforcement Learning is emerging as a promising approach for the continuous control task of robotic arm movement. However, the challenges of learning robust and versatile control capabilities are still far from being resolved for real-world applications, mainly because of two common issues of this learning paradigm: the exploration strategy and the slow learning speed, sometimes known as "the curse of dimensionality". This work aims at exploring and assessing the advantages of the application of Quantum Computing to one of the state-of-art Reinforcement Learning techniques for continuous control - namely Soft Actor-Critic. Specifically, the performance of a Variational Quantum Soft Actor-Critic on the movement of a virtual robotic arm has been investigated by means of digital simulations of quantum circuits. A quantum advantage over the classical algorithm has been found in terms of a significant decrease in the amount of required parameters for satisfactory model training, paving the way for further promising developments.
translated by 谷歌翻译
In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.
translated by 谷歌翻译