尽管加权套索回归具有吸引力的统计保障,但由于其复杂的搜索空间,通常避免了已有数千个Quand参与的。另一方面,具有用于黑盒功能的高维HPO方法的最新进展表明,高维应用确实可以有效地优化。尽管这一初步成功,但高维HPO方法通常应用于具有适度数量的合成问题,这些尺寸限制了其对科学和工程应用的影响。为了解决这一限制,我们提出了一个新的基准套件,这是一个在卢赛社区中的一个重要的开放研究主题量身定制的,这是加权套索回归。 Lassobench由受良好控制的合成设置(样本,SNR,环境和有效维度以及多维保真度)和现实世界数据集组成的基准,这使得能够利用许多HPO算法来改进和扩展到高维设置。我们评估了5种最先进的HPO方法和3个基线,并表明贝叶斯优化可以改善通常用于稀疏回归的方法,同时突出显示这些框架在非常高的框架中的限制。值得注意的是,贝叶斯优化分别将60,100,300和1000个尺寸问题的卢斯基线分别改善了45.7%,19.2%,19.7%和15.5%。
translated by 谷歌翻译