作为加强学习(RL)通过奖励信号铸造的基于会议或顺序推荐是一个有前途的研究方向,旨在最大化累积利润的推荐系统(RS)。然而,由于违规培训,巨大的动作空间和缺乏足够的奖励信号,RL算法中的RL算法直接使用RL算法是不切实际的。最近的RL用于RS试图通过结合RL和(自我)监督的连续学习来解决这些挑战的方法,但仍然遭受某些限制。例如,由于缺少负奖励信号,Q值的估计趋于向正值偏置。此外,Q值也大量取决于序列的特定时间戳。为了解决上述问题,我们提出了培训RL组件的负面采样策略,并将其与监督顺序学习结合起来。我们称这种方法监督负面Q-Learning(SNQN)。基于采样(否定)动作(项目),我们可以计算平均案例的积极动作的“优势”,这可以进一步用于学习监督的顺序部分的标准化重量。这导致了另一个学习框架:监督优势演员 - 评论家(SA2C)。我们使用四个最先进的顺序推荐模型实例化SNQN和SA2C,并在两个现实世界数据集中进行实验。实验结果表明,拟议的方法比最先进的监督方法和现有的自我监督的RL方法达到明显更好的性能。代码将是开放的。
translated by 谷歌翻译
Catastrophic forgetting occurs when a neural network loses the information learned in a previous task after training on subsequent tasks. This problem remains a hurdle for artificial intelligence systems with sequential learning capabilities. In this paper, we propose a task-based hard attention mechanism that preserves previous tasks' information without affecting the current task's learning. A hard attention mask is learned concurrently to every task, through stochastic gradient descent, and previous masks are exploited to condition such learning. We show that the proposed mechanism is effective for reducing catastrophic forgetting, cutting current rates by 45 to 80%. We also show that it is robust to different hyperparameter choices, and that it offers a number of monitoring capabilities. The approach features the possibility to control both the stability and compactness of the learned knowledge, which we believe makes it also attractive for online learning or network compression applications.
translated by 谷歌翻译
Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent in data-scarce settings, such as low-resource languages, where diversity of training data is limited. In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a $120$ hour speech corpus for Greek, consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques is particularly effective, yielding word error rates comparable to the fully supervised baselines.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Designing powerful adversarial attacks is of paramount importance for the evaluation of $\ell_p$-bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated by the steepest ascent directions of an objective. Despite the plethora of objective function choices, there is no universally superior option and robustness overestimation may arise from ill-suited objective selection. Driven by this observation, we postulate that the combination of different objectives through a simple loss alternating scheme renders PGD more robust towards design choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $\ell_{\infty}$-robust models and 3 datasets. The performance improvement is consistent, when compared to the single loss counterparts. In the CIFAR-10 dataset, our strongest adversarial attack outperforms all of the white-box components of AutoAttack (AA) ensemble, as well as the most powerful attacks existing on the literature, achieving state-of-the-art results in the computational budget of our study ($T=100$, no restarts).
translated by 谷歌翻译
We present RAVEn, a self-supervised multi-modal approach to jointly learn visual and auditory speech representations. Our pre-training objective involves encoding masked inputs, and then predicting contextualised targets generated by slowly-evolving momentum encoders. Driven by the inherent differences between video and audio, our design is asymmetric w.r.t. the two modalities' pretext tasks: Whereas the auditory stream predicts both the visual and auditory targets, the visual one predicts only the auditory targets. We observe strong results in low- and high-resource labelled data settings when fine-tuning the visual and auditory encoders resulting from a single pre-training stage, in which the encoders are jointly trained. Notably, RAVEn surpasses all self-supervised methods on visual speech recognition (VSR) on LRS3, and combining RAVEn with self-training using only 30 hours of labelled data even outperforms a recent semi-supervised method trained on 90,000 hours of non-public data. At the same time, we achieve state-of-the-art results in the LRS3 low-resource setting for auditory speech recognition (as well as for VSR). Our findings point to the viability of learning powerful speech representations entirely from raw video and audio, i.e., without relying on handcrafted features. Code and models will be made public.
translated by 谷歌翻译
Multimodal learning pipelines have benefited from the success of pretrained language models. However, this comes at the cost of increased model parameters. In this work, we propose Adapted Multimodal BERT (AMB), a BERT-based architecture for multimodal tasks that uses a combination of adapter modules and intermediate fusion layers. The adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations. During the adaptation process the pre-trained language model parameters remain frozen, allowing for fast, parameter-efficient training. In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise. Our experiments on sentiment analysis with CMU-MOSEI show that AMB outperforms the current state-of-the-art across metrics, with 3.4% relative reduction in the resulting error and 2.1% relative improvement in 7-class classification accuracy.
translated by 谷歌翻译
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton. The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases. In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features. We follow the strategy of implicit distribution modelling via generative adversarial network (GAN) combined with permutation equivariant message passing architecture operating over the sets of nodes and edges. This enables generating the feature vectors of all the graph objects in one go (in 2 phases) as opposed to a much slower one-by-one generations of sequential models, prevents the need for expensive graph matching procedures usually needed for likelihood-based generative models, and uses efficiently the network capacity by being insensitive to the particular node ordering in the graph representation. To the best of our knowledge, this is the first method that models the feature distribution along the graph skeleton allowing for generations of annotated graphs with user specified structures. Our experiments demonstrate the ability of our model to learn complex structured distributions through quantitative evaluation over three annotated graph datasets.
translated by 谷歌翻译
We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of $S^*(0)$" produces the exact object while the prompt "A photo of $S^*(0.8)$" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion
translated by 谷歌翻译
Modern Deep Learning (DL) models have grown to sizes requiring massive clusters of specialized, high-end nodes to train. Designing such clusters to maximize both performance and utilization to amortize their steep cost is a challenging task requiring careful balance of compute, memory, and network resources. Moreover, a plethora of each model's tuning knobs drastically affect the performance, with optimal values often depending on the underlying cluster's characteristics, which necessitates a complex cluster-workload co-design process. To facilitate the design space exploration of such massive DL training clusters, we introduce COMET a holistic cluster design methodology and workflow to jointly study the impact of parallelization strategies and key cluster resource provisioning on the performance of distributed DL training. We develop a step-by-step process to establish a reusable and flexible methodology, and demonstrate its application with a case study of training a Transformer-1T model on a cluster of variable compute, memory, and network resources. Our case study demonstrates COMET's utility in identifying promising architectural optimization directions and guiding system designers in configuring key model and cluster parameters.
translated by 谷歌翻译