Recent mean field interpretations of learning dynamics in over-parameterized neural networks offer theoretical insights on the empirical success of first order optimization algorithms in finding global minima of the nonconvex risk landscape. In this paper, we explore applying mean field learning dynamics as a computational algorithm, rather than as an analytical tool. Specifically, we design a Sinkhorn regularized proximal algorithm to approximate the distributional flow from the learning dynamics in the mean field regime over weighted point clouds. In this setting, a contractive fixed point recursion computes the time-varying weights, numerically realizing the interacting Wasserstein gradient flow of the parameter distribution supported over the neuronal ensemble. An appealing aspect of the proposed algorithm is that the measure-valued recursions allow meshless computation. We demonstrate the proposed computational framework of interacting weighted particle evolution on binary and multi-class classification. Our algorithm performs gradient descent of the free energy associated with the risk functional.
translated by 谷歌翻译
Machine learning model development and optimisation can be a rather cumbersome and resource-intensive process. Custom models are often more difficult to build and deploy, and they require infrastructure and expertise which are often costly to acquire and maintain. Machine learning product development lifecycle must take into account the need to navigate the difficulties of developing and deploying machine learning models. evoML is an AI-powered tool that provides automated functionalities in machine learning model development, optimisation, and model code optimisation. Core functionalities of evoML include data cleaning, exploratory analysis, feature analysis and generation, model optimisation, model evaluation, model code optimisation, and model deployment. Additionally, a key feature of evoML is that it embeds code and model optimisation into the model development process, and includes multi-objective optimisation capabilities.
translated by 谷歌翻译
The Graph Protocol indexes historical blockchain transaction data and makes it available for querying. As the protocol is decentralized, there are many independent Indexers that index and compete with each other for serving queries to the Consumers. One dimension along which Indexers compete is pricing. In this paper, we propose a bandit-based algorithm for maximization of Indexers' revenue via Consumer budget discovery. We present the design and the considerations we had to make for a dynamic pricing algorithm being used by multiple agents simultaneously. We discuss the results achieved by our dynamic pricing bandits both in simulation and deployed into production on one of the Indexers operating on Ethereum. We have open-sourced both the simulation framework and tools we created, which other Indexers have since started to adapt into their own workflows.
translated by 谷歌翻译
This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.
translated by 谷歌翻译
As aerial robots are tasked to navigate environments of increased complexity, embedding collision tolerance in their design becomes important. In this survey we review the current state-of-the-art within the niche field of collision-tolerant micro aerial vehicles and present different design approaches identified in the literature, as well as methods that have focused on autonomy functionalities that exploit collision resilience. Subsequently, we discuss the relevance to biological systems and provide our view on key directions of future fruitful research.
translated by 谷歌翻译
Given a particular embodiment, we propose a novel method (C3PO) that learns policies able to achieve any arbitrary position and pose. Such a policy would allow for easier control, and would be re-useable as a key building block for downstream tasks. The method is two-fold: First, we introduce a novel exploration algorithm that optimizes for uniform coverage, is able to discover a set of achievable states, and investigates its abilities in attaining both high coverage, and hard-to-discover states; Second, we leverage this set of achievable states as training data for a universal goal-achievement policy, a goal-based SAC variant. We demonstrate the trained policy's performance in achieving a large number of novel states. Finally, we showcase the influence of massive unsupervised training of a goal-achievement policy with state-of-the-art pose-based control of the Hopper, Walker, Halfcheetah, Humanoid and Ant embodiments.
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译
语义搜索是一项重要的任务,目的是从数据库中找到相关索引以进行查询。它需要一个可以正确学习句子语义的检索模型。基于变压器的模型由于其出色的学习语义表示能力而被广泛用作检索模型。同时,还提出了许多适合它们的正则化方法。在本文中,我们提出了一种新的正则化方法:正则化对比度学习,可以帮助基于变压器的模型学习更好地表示句子。首先,它为每个句子增强了几个不同的语义表示,然后将它们作为监管机构的对比目标。这些对比调节器可以克服过度拟合的问题并减轻各向异性问题。我们首先使用优于预训练的模型Sroberta对7个语义搜索基准测试进行评估。结果表明,我们的方法更有效地学习了出色的句子表示。然后,我们评估具有长期查询和索引的2个具有挑战性的FAQ数据集,咳嗽和FAQIR。我们的实验结果表明,我们的方法表现优于基线方法。
translated by 谷歌翻译
Covid-19幸存者中很大一部分经历了经常影响日常生活的持续多系统症状,这种疾病被称为SARS-COV-2感染的长期或急性后静脉曲张。但是,识别长期的卷文章是具有挑战性的,因为文章是指使用各种较少常见的术语或根本不使用命名的条件。我们开发了一个迭代的人类机器学习框架,旨在有效利用可用的数据并最有效地利用人类标签。具体而言,我们的方法将数据编程与主动学习结合到了强大的集合模型中。在保留集上评估我们的模型表明了其他方法的灵敏度的三倍。我们将模型应用于PubMed来创建长期的共同集合,并证明(1)最长的卷vid文章在命名该条件时并不是用任何名称(2)来指代长的covid,在生物医学文献中最常使用的名称是长的,并且(3)长互联物与各种身体系统中的疾病有关。长期COVID系列每周更新,可在Litcovid门户网站上进行在线搜索:https://www.ncbi.nlm.nih.gov/research/coronavirus/docsum/docsum?filters=e_condition.longcondition.longcovid.longcovid
translated by 谷歌翻译
在本文中,我们解决了单眼散景合成的问题,我们试图从单个全焦点图像中呈现浅深度图像。与DSLR摄像机不同,由于移动光圈的物理限制,这种效果无法直接在移动摄像机中捕获。因此,我们提出了一种基于网络的方法,该方法能够从单个图像输入中渲染现实的单眼散景。为此,我们根据预测的单眼深度图引入了三个新的边缘感知散景损失,该图在模糊背景时锐化了前景边缘。然后,使用对抗性损失对该模型进行固定,从而产生逼真的玻璃效果。实验结果表明,我们的方法能够在处理复杂场景的同时产生令人愉悦的自然散景效果,并具有锋利的边缘。
translated by 谷歌翻译