Deep learning has made a breakthrough in medical image segmentation in recent years due to its ability to extract high-level features without the need for prior knowledge. In this context, U-Net is one of the most advanced medical image segmentation models, with promising results in mammography. Despite its excellent overall performance in segmenting multimodal medical images, the traditional U-Net structure appears to be inadequate in various ways. There are certain U-Net design modifications, such as MultiResUNet, Connected-UNets, and AU-Net, that have improved overall performance in areas where the conventional U-Net architecture appears to be deficient. Following the success of UNet and its variants, we have presented two enhanced versions of the Connected-UNets architecture: ConnectedUNets+ and ConnectedUNets++. In ConnectedUNets+, we have replaced the simple skip connections of Connected-UNets architecture with residual skip connections, while in ConnectedUNets++, we have modified the encoder-decoder structure along with employing residual skip connections. We have evaluated our proposed architectures on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast.
translated by 谷歌翻译
眼科图像可能包含相同的外观病理,这些病理可能导致自动化技术的失败以区分不同的视网膜退行性疾病。此外,依赖大型注释数据集和缺乏知识蒸馏可以限制基于ML的临床支持系统在现实环境中的部署。为了提高知识的鲁棒性和可传递性,需要一个增强的特征学习模块才能从视网膜子空间中提取有意义的空间表示。这样的模块(如果有效使用)可以检测到独特的疾病特征并区分这种视网膜退行性病理的严重程度。在这项工作中,我们提出了一个具有三个学习头的健壮疾病检测结构,i)是视网膜疾病分类的监督编码器,ii)一种无监督的解码器,用于重建疾病特异性的空间信息,iiii iii)一个新的表示模块,用于学习模块了解编码器折叠功能和增强模型的准确性之间的相似性。我们对两个公开可用的OCT数据集的实验结果表明,该模型在准确性,可解释性和鲁棒性方面优于现有的最新模型,用于分布视网膜外疾病检测。
translated by 谷歌翻译
从心电图中自动化心律失常的自动化检测需要一个可靠且值得信赖的系统,该系统在电动扰动下保持高精度。许多机器学习方法在对心电图的心律不齐分类方面已经达到了人类水平的表现。但是,这些体系结构容易受到对抗攻击的影响,这可能会通过降低模型的准确性来误解ECG信号。对抗性攻击是在原始数据中注入的小型制作的扰动,这些扰动表现出信号的过度分发转移,以错误地分类正确的类。因此,滥用这些扰动的虚假住院和保险欺诈引起了安全问题。为了减轻此问题,我们引入了第一个新型的条件生成对抗网络(GAN),可抵抗对抗性攻击的ECG信号,并保持高精度。我们的体系结构集成了一个新的类加权目标函数,用于对抗扰动识别和新的块,用于辨别和组合学习过程中信号中的分布外变化,以准确地对各种心律失常类型进行分类。此外,我们在六种不同的白色和黑色盒子攻击上对架构进行了基准测试,并将它们与最近提出的其他心律失常分类模型进行比较,这是两个公开可用的ECG心律失常数据集。该实验证实,我们的模型对这种对抗性攻击更为强大,以高精度对心律不齐进行分类。
translated by 谷歌翻译
The main objective of Prognostics and Health Management is to estimate the Remaining Useful Lifetime (RUL), namely, the time that a system or a piece of equipment is still in working order before starting to function incorrectly. In recent years, numerous machine learning algorithms have been proposed for RUL estimation, mainly focusing on providing more accurate RUL predictions. However, there are many sources of uncertainty in the problem, such as inherent randomness of systems failure, lack of knowledge regarding their future states, and inaccuracy of the underlying predictive models, making it infeasible to predict the RULs precisely. Hence, it is of utmost importance to quantify the uncertainty alongside the RUL predictions. In this work, we investigate the conformal prediction (CP) framework that represents uncertainty by predicting sets of possible values for the target variable (intervals in the case of RUL) instead of making point predictions. Under very mild technical assumptions, CP formally guarantees that the actual value (true RUL) is covered by the predicted set with a degree of certainty that can be prespecified. We study three CP algorithms to conformalize any single-point RUL predictor and turn it into a valid interval predictor. Finally, we conformalize two single-point RUL predictors, deep convolutional neural networks and gradient boosting, and illustrate their performance on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data sets.
translated by 谷歌翻译
With the advent of deep learning application on edge devices, researchers actively try to optimize their deployments on low-power and restricted memory devices. There are established compression method such as quantization, pruning, and architecture search that leverage commodity hardware. Apart from conventional compression algorithms, one may redesign the operations of deep learning models that lead to more efficient implementation. To this end, we propose EuclidNet, a compression method, designed to be implemented on hardware which replaces multiplication, $xw$, with Euclidean distance $(x-w)^2$. We show that EuclidNet is aligned with matrix multiplication and it can be used as a measure of similarity in case of convolutional layers. Furthermore, we show that under various transformations and noise scenarios, EuclidNet exhibits the same performance compared to the deep learning models designed with multiplication operations.
translated by 谷歌翻译
Performance metrics-driven context caching has a profound impact on throughput and response time in distributed context management systems for real-time context queries. This paper proposes a reinforcement learning based approach to adaptively cache context with the objective of minimizing the cost incurred by context management systems in responding to context queries. Our novel algorithms enable context queries and sub-queries to reuse and repurpose cached context in an efficient manner. This approach is distinctive to traditional data caching approaches by three main features. First, we make selective context cache admissions using no prior knowledge of the context, or the context query load. Secondly, we develop and incorporate innovative heuristic models to calculate expected performance of caching an item when making the decisions. Thirdly, our strategy defines a time-aware continuous cache action space. We present two reinforcement learning agents, a value function estimating actor-critic agent and a policy search agent using deep deterministic policy gradient method. The paper also proposes adaptive policies such as eviction and cache memory scaling to complement our objective. Our method is evaluated using a synthetically generated load of context sub-queries and a synthetic data set inspired from real world data and query samples. We further investigate optimal adaptive caching configurations under different settings. This paper presents, compares, and discusses our findings that the proposed selective caching methods reach short- and long-term cost- and performance-efficiency. The paper demonstrates that the proposed methods outperform other modes of context management such as redirector mode, and database mode, and cache all policy by up to 60% in cost efficiency.
translated by 谷歌翻译
We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) Learning, the entities use a shared feature extractor to compute feature embeddings of samples. In Locally Trained Feature Extractor (LTFE) Learning, each entity uses a separate feature extractor and models are trained using concatenated features from all entities. As a baseline, in Cooperatively Trained Feature Extractor (CTFE) Learning, the entities train models by sharing raw data. Secure multi-party algorithms are utilized to train models without revealing data or features in plain text. We investigate the trade-offs among SFE, LTFE, and CTFE in regard to performance, privacy leakage (using an off-the-shelf membership inference attack), and computational cost. LTFE provides the most privacy, followed by SFE, and then CTFE. Computational cost is lowest for SFE and the relative speed of CTFE and LTFE depends on network architecture. CTFE and LTFE provide the best accuracy. We use MNIST, a synthetic dataset, and a credit card fraud detection dataset for evaluations.
translated by 谷歌翻译
This work presents an actuation framework for a bioinspired flapping drone called Aerobat. This drone, capable of producing dynamically versatile wing conformations, possesses 14 body joints and is tail-less. Therefore, in our robot, unlike mainstream flapping wing designs that are open-loop stable and have no pronounced morphing characteristics, the actuation, and closed-loop feedback design can pose significant challenges. We propose a framework based on integrating mechanical intelligence and control. In this design framework, small adjustments led by several tiny low-power actuators called primers can yield significant flight control roles owing to the robot's computational structures. Since they are incredibly lightweight, the system can host the primers in large numbers. In this work, we aim to show the feasibility of joint's motion regulation in Aerobat's untethered flights.
translated by 谷歌翻译
Flying animals, such as bats, fly through their fluidic environment as they create air jets and form wake structures downstream of their flight path. Bats, in particular, dynamically morph their highly flexible and dexterous armwing to manipulate their fluidic environment which is key to their agility and flight efficiency. This paper presents the theoretical and numerical analysis of the wake-structure-based gait design inspired by bat flight for flapping robots using the notion of reduced-order models and unsteady aerodynamic model incorporating Wagner function. The objective of this paper is to introduce the notion of gait design for flapping robots by systematically searching the design space in the context of optimization. The solution found using our gait design framework was used to design and test a flapping robot.
translated by 谷歌翻译
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
translated by 谷歌翻译