Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
translated by 谷歌翻译
Text detoxification has the potential to mitigate the harms of toxicity by rephrasing text to remove offensive meaning, but subtle toxicity remains challenging to tackle. We introduce MaRCo, a detoxification algorithm that combines controllable generation and text rewriting methods using a Product of Experts with autoencoder language models (LMs). MaRCo uses likelihoods under a non-toxic LM (expert) and a toxic LM (anti-expert) to find candidate words to mask and potentially replace. We evaluate our method on several subtle toxicity and microaggressions datasets, and show that it not only outperforms baselines on automatic metrics, but MaRCo's rewrites are preferred 2.1 $\times$ more in human evaluation. Its applicability to instances of subtle toxicity is especially promising, demonstrating a path forward for addressing increasingly elusive online hate.
translated by 谷歌翻译
众包NLP数据集的反复挑战是,在制作示例时,人类作家通常会依靠重复的模式,从而导致缺乏语言多样性。我们介绍了一种基于工人和AI协作的数据集创建的新方法,该方法汇集了语言模型的生成力量和人类的评估力量。从现有的数据集,自然语言推理(NLI)的Multinli开始,我们的方法使用数据集制图自动识别示例来证明具有挑战性的推理模式,并指示GPT-3撰写具有相似模式的新示例。然后,机器生成的示例会自动过滤,并最终由人类人群工人修订和标记。最终的数据集Wanli由107,885个NLI示例组成,并在现有的NLI数据集上呈现出独特的经验优势。值得注意的是,培训有关Wanli的模型,而不是Multinli($ 4 $ $倍)可改善我们考虑的七个外域测试集的性能,包括汉斯(Hans)的11%和对抗性NLI的9%。此外,将Multinli与Wanli结合起来比将其与其他NLI增强集相结合更有效。我们的结果表明,自然语言生成技术的潜力是策划增强质量和多样性的NLP数据集。
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
In robotics, optimizing controller parameters under safety constraints is an important challenge. Safe Bayesian optimization (BO) quantifies uncertainty in the objective and constraints to safely guide exploration in such settings. Hand-designing a suitable probabilistic model can be challenging, however. In the presence of unknown safety constraints, it is crucial to choose reliable model hyper-parameters to avoid safety violations. Here, we propose a data-driven approach to this problem by meta-learning priors for safe BO from offline data. We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity. As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner via empirical uncertainty metrics and a frontier search algorithm. On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches while maintaining safety.
translated by 谷歌翻译
在本文中,我们希望介绍有关克服神经网络中灾难性遗忘方法的某些问题的经验验证结果。首先,在引言中,我们将尝试详细描述灾难性遗忘的问题,并为那些尚不熟悉该主题的人克服它的方法。然后,我们将讨论我们在先前论文中提出的WVA方法的本质和局限性。此外,我们将介绍将WVA方法应用于权重梯度或优化步骤的问题,选择此方法中的最佳衰减功能,并根据顺序中的任务数量选择该方法的最佳超参数培训神经网络。
translated by 谷歌翻译
本概述论文描述了乌尔都语语言中的假新闻检测的第一个共享任务。该任务是作为二进制分类任务的,目标是区分真实新闻和虚假新闻。我们提供了一个数据集,分为900个注释的新闻文章,用于培训,并进行了400篇新闻文章进行测试。该数据集包含五个领域的新闻:(i)健康,(ii)体育,(iii)Showbiz,(iv)技术和(v)业务。来自6个不同国家(印度,中国,埃及,德国,巴基斯坦和英国)的42个团队登记了这项任务。9个团队提交了他们的实验结果。参与者使用了各种机器学习方法,从基于功能的传统机器学习到神经网络技术。最佳性能系统的F得分值为0.90,表明基于BERT的方法优于其他机器学习技术
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
这项研究报告了第二个名为Urdufake@Fire2021的共享任务,以识别乌尔都语语言的假新闻检测。这是一个二进制分类问题,在其中,任务是将给定的新闻文章分为两类:(i)真实新闻,或(ii)假新闻。在这项共同的任务中,来自7个不同国家(中国,埃及,以色列,印度,墨西哥,巴基斯坦和阿联酋)的34个团队注册参加了共同的任务,18个团队提交了他们的实验结果,11个团队提交了他们的技术报告。所提出的系统基于各种基于计数的功能,并使用了不同的分类器以及神经网络体系结构。随机梯度下降(SGD)算法的表现优于其他分类器,并达到0.679 F-SCORE。
translated by 谷歌翻译
在当代世界中,自动检测假新闻是一项非常重要的任务。这项研究报告了第二项共享任务,称为Urdufake@fire2021,以识别乌尔都语中的假新闻检测。共同任务的目的是激励社区提出解决这一至关重要问题的有效方法,尤其是对于乌尔都语。该任务被视为二进制分类问题,将给定的新闻文章标记为真实或假新闻文章。组织者提供了一个数据集,其中包括五个领域的新闻:(i)健康,(ii)体育,(iii)Showbiz,(iv)技术和(v)业务,分为培训和测试集。该培训集包含1300篇注释的新闻文章 - 750个真实新闻,550个假新闻,而测试集包含300篇新闻文章 - 200个真实,100个假新闻。来自7个不同国家(中国,埃及,以色列,印度,墨西哥,巴基斯坦和阿联酋)的34个团队注册参加了Urdufake@Fire2021共享任务。在这些情况下,有18个团队提交了实验结果,其中11个提交了技术报告,与2020年的Urdufake共享任务相比,这一报告要高得多,当时只有6个团队提交了技术报告。参与者提交的技术报告展示了不同的数据表示技术,从基于计数的弓形功能到单词矢量嵌入以及使用众多的机器学习算法,从传统的SVM到各种神经网络体系结构,包括伯特和罗伯塔等变形金刚。在今年的比赛中,表现最佳的系统获得了0.679的F1-MACRO得分,低于过去一年的0.907 F1-MaCro的最佳结果。诚然,尽管过去和当前几年的培训集在很大程度上重叠,但如果今年完全不同,则测试集。
translated by 谷歌翻译