近年来,通过编码签名距离的神经网络的隐式表面表示已获得流行,并获得了最先进的结果。但是,与传统的形状表示(例如多边形网格)相反,隐式表示不容易编辑,并且试图解决此问题的现有作品非常有限。在这项工作中,我们提出了第一种通过神经网络表达的签名距离函数有效互动编辑的方法,从而可以自由编辑。受到网格雕刻软件的启发,我们使用了一个基于刷子的框架,该框架是直观的,将来可以由雕塑家和数字艺术家使用。为了定位所需的表面变形,我们通过使用其副本来调节网络来采样先前表达的表面。我们引入了一个新型框架,用于模拟雕刻风格的表面编辑,并结合交互式表面采样和网络重量的有效适应。我们在各种不同的3D对象和许多不同的编辑下进行定性和定量评估我们的方法。报告的结果清楚地表明,我们的方法在实现所需的编辑方面产生了很高的精度,同时保留了交互区域之外的几何形状。
translated by 谷歌翻译
在本文中,我们介绍了一条神经渲染管道,用于将一个人在源视频中的面部表情,头部姿势和身体运动转移到目标视频中的另一个人。我们将方法应用于手语视频的具有挑战性的案例:给定手语用户的源视频,我们可以忠实地传输执行的手册(例如握手,棕榈方向,运动,位置)和非手术(例如,眼睛凝视,凝视,面部表情,头部移动)以照片真实的方式标志着目标视频。为了有效捕获上述提示,这些线索对于手语交流至关重要,我们以最近引入的最健壮和最可靠的深度学习方法的有效组合来建立。使用3D感知表示,将身体部位的估计运动组合并重新定位到目标签名者。然后将它们作为我们的视频渲染网络的条件输入,从而生成时间一致和照片现实的视频。我们进行了详细的定性和定量评估和比较,这些评估和比较证明了我们的方法的有效性及其对现有方法的优势。我们的方法产生了前所未有的现实主义的有希望的结果,可用于手语匿名。此外,它很容易适用于重新制定其他类型的全身活动(舞蹈,表演,锻炼等)以及手语生产系统的合成模块。
translated by 谷歌翻译
由于深度学习的出现,图像数据的最新技术对单眼3D面对重建的重建取得了令人印象深刻的进步。但是,它主要集中于来自单个RGB图像的输入,忽略以下重要因素:a)如今,感兴趣的绝大多数面部图像数据不是来自单个图像,而是来自包含丰富动态信息的视频。 。 b)此外,这些视频通常以某种形式的口头交流捕捉个人(公众对话,电视会议,视听人类计算机的互动,访谈,电影中的独白/对话等)。当在此类视频中应用现有的3D面部重建方法时,重建口腔区域的形状和运动中的伪影通常很严重,因为它们与语音音频不太匹配。为了克服上述局限性,我们提出了3D口表达的视觉语音感知重建的第一种方法。我们通过提出“口语”损失来做到这一点,该损失指导拟合过程,从而使3D重建的说话头的感知与原始录像相似。我们证明,有趣的是,与传统的具有里程碑意义的损失,甚至直接3D监督相比,口头损失更适合3D重建嘴运动。此外,设计的方法不依赖于任何文本转录或相应的音频,因此非常适合在未标记的数据集中培训。我们通过对三个大规模数据集的详尽客观评估以及通过两种基于网络的用户研究进行主观评估来验证方法的效率。
translated by 谷歌翻译
在本文中,我们介绍了一种新颖的深入学习方法,用于“野外”视频中演员的情绪状态的光学逼真操纵。所提出的方法基于输入场景中的演员的参数3D面表示,其提供来自头部姿势和面部表达的面部身份的可靠性解剖。然后,它使用新的深度域翻译框架,以符合他们的动态,以一致而合理的方式改变面部表情。最后,改变改变的面部表情用于基于特别设计的神经面渲染器光实际地操纵输入场景中的面部区域。据我们所知,我们的方法是第一个能够通过唯一用作操纵情绪的语义标记来控制演员的面部表情,同时保持与语音相关的唇部运动。我们进行广泛的定性和定量评估和比较,展示了我们的方法的有效性以及我们获得的特别有希望的结果。我们的方法为神经渲染技术的有用应用开辟了一种新的可能性,从电影后生产和视频游戏到照片逼真的情感化身。
translated by 谷歌翻译
编辑和操纵视频中的面部特征是一种有趣而重要的研究领域,具有夸张的应用,从电影生产和视觉效果到视频游戏和虚拟助手的现实头像。据我们所知,本文提出了第一种在视频中进行了对面部表情的照相型式操纵的方法。我们的方法支持基于神经渲染和基于3D的面部表情建模的语义视频操纵。我们专注于通过改变和控制面部表情来互动操纵视频,实现有前途的光电温度效果。该方法基于用于3D面部形状和活动的脱屑表示和估计,为用户提供对输入视频中的面部表情的直观且易于使用的控制。我们还介绍了一个用户友好的交互式AI工具,该工具处理有关输入视频的特定部分的所需情绪操纵的人类可读的语义标签,并合成光电环境拟人的操纵视频。我们通过将情绪标签映射到价值(VA)值来实现这一点,又通过特别设计和训练的表达式解码器网络映射到解开的3D面部表达式。本文提出了详细的定性和定量实验,展示了我们系统的有效性以及它实现的有希望的结果。可以在补充材料中找到其他结果和视频(https://github.com/girish-03/deepsemmanipulation)。
translated by 谷歌翻译
Merging satellite products and ground-based measurements is often required for obtaining precipitation datasets that simultaneously cover large regions with high density and are more accurate than pure satellite precipitation products. Machine and statistical learning regression algorithms are regularly utilized in this endeavour. At the same time, tree-based ensemble algorithms for regression are adopted in various fields for solving algorithmic problems with high accuracy and low computational cost. The latter can constitute a crucial factor for selecting algorithms for satellite precipitation product correction at the daily and finer time scales, where the size of the datasets is particularly large. Still, information on which tree-based ensemble algorithm to select in such a case for the contiguous United States (US) is missing from the literature. In this work, we conduct an extensive comparison between three tree-based ensemble algorithms, specifically random forests, gradient boosting machines (gbm) and extreme gradient boosting (XGBoost), in the context of interest. We use daily data from the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and the IMERG (Integrated Multi-satellitE Retrievals for GPM) gridded datasets. We also use earth-observed precipitation data from the Global Historical Climatology Network daily (GHCNd) database. The experiments refer to the entire contiguous US and additionally include the application of the linear regression algorithm for benchmarking purposes. The results suggest that XGBoost is the best-performing tree-based ensemble algorithm among those compared. They also suggest that IMERG is more useful than PERSIANN in the context investigated.
translated by 谷歌翻译
Being able to forecast the popularity of new garment designs is very important in an industry as fast paced as fashion, both in terms of profitability and reducing the problem of unsold inventory. Here, we attempt to address this task in order to provide informative forecasts to fashion designers within a virtual reality designer application that will allow them to fine tune their creations based on current consumer preferences within an interactive and immersive environment. To achieve this we have to deal with the following central challenges: (1) the proposed method should not hinder the creative process and thus it has to rely only on the garment's visual characteristics, (2) the new garment lacks historical data from which to extrapolate their future popularity and (3) fashion trends in general are highly dynamical. To this end, we develop a computer vision pipeline fine tuned on fashion imagery in order to extract relevant visual features along with the category and attributes of the garment. We propose a hierarchical label sharing (HLS) pipeline for automatically capturing hierarchical relations among fashion categories and attributes. Moreover, we propose MuQAR, a Multimodal Quasi-AutoRegressive neural network that forecasts the popularity of new garments by combining their visual features and categorical features while an autoregressive neural network is modelling the popularity time series of the garment's category and attributes. Both the proposed HLS and MuQAR prove capable of surpassing the current state-of-the-art in key benchmark datasets, DeepFashion for image classification and VISUELLE for new garment sales forecasting.
translated by 谷歌翻译
Although many machine learning methods, especially from the field of deep learning, have been instrumental in addressing challenges within robotic applications, we cannot take full advantage of such methods before these can provide performance and safety guarantees. The lack of trust that impedes the use of these methods mainly stems from a lack of human understanding of what exactly machine learning models have learned, and how robust their behaviour is. This is the problem the field of explainable artificial intelligence aims to solve. Based on insights from the social sciences, we know that humans prefer contrastive explanations, i.e.\ explanations answering the hypothetical question "what if?". In this paper, we show that linear model trees are capable of producing answers to such questions, so-called counterfactual explanations, for robotic systems, including in the case of multiple, continuous inputs and outputs. We demonstrate the use of this method to produce counterfactual explanations for two robotic applications. Additionally, we explore the issue of infeasibility, which is of particular interest in systems governed by the laws of physics.
translated by 谷歌翻译
Valuing mineral assets is a challenging task that is highly dependent on the supply (geological) uncertainty surrounding resources and reserves, and the uncertainty of demand (commodity prices). In this work, a graph-based reasoning, modeling and solution approach is proposed to jointly address mineral asset valuation and mine plan scheduling and optimization under supply and demand uncertainty in the "mining complex" framework. Three graph-based solutions are proposed: (i) a neural branching policy that learns a block-sampling ore body representation, (ii) a guiding policy that learns to explore a heuristic selection tree, (iii) a hyper-heuristic that manages the value/supply chain optimization and dynamics modeled as a graph structure. Results on two large-scale industrial mining complexes show a reduction of up to three orders of magnitude in primal suboptimality, execution time, and number of iterations, and an increase of up to 40% in the mineral asset value.
translated by 谷歌翻译
The extragradient method has recently gained increasing attention, due to its convergence behavior on smooth games. In $n$-player differentiable games, the eigenvalues of the Jacobian of the vector field are distributed on the complex plane, exhibiting more convoluted dynamics compared to classical (i.e., single player) minimization. In this work, we take a polynomial-based analysis of the extragradient with momentum for optimizing games with \emph{cross-shaped} Jacobian spectrum on the complex plane. We show two results. First, based on the hyperparameter setup, the extragradient with momentum exhibits three different modes of convergence: when the eigenvalues are distributed $i)$ on the real line, $ii)$ both on the real line along with complex conjugates, and $iii)$ only as complex conjugates. Then, we focus on the case $ii)$, i.e., when the eigenvalues of the Jacobian have \emph{cross-shaped} structure, as observed in training generative adversarial networks. For this problem class, we derive the optimal hyperparameters of the momentum extragradient method, and show that it achieves an accelerated convergence rate.
translated by 谷歌翻译