Reliable and robust user identification and authentication are important and often necessary requirements for many digital services. It becomes paramount in social virtual reality (VR) to ensure trust, specifically in digital encounters with lifelike realistic-looking avatars as faithful replications of real persons. Recent research has shown that the movements of users in extended reality (XR) systems carry user-specific information and can thus be used to verify their identities. This article compares three different potential encodings of the motion data from head and hands (scene-relative, body-relative, and body-relative velocities), and the performances of five different machine learning architectures (random forest, multi-layer perceptron, fully recurrent neural network, long-short term memory, gated recurrent unit). We use the publicly available dataset "Talking with Hands" and publish all code to allow reproducibility and to provide baselines for future work. After hyperparameter optimization, the combination of a long-short term memory architecture and body-relative data outperformed competing combinations: the model correctly identifies any of the 34 subjects with an accuracy of 100% within 150 seconds. Altogether, our approach provides an effective foundation for behaviometric-based identification and authentication to guide researchers and practitioners. Data and code are published under https://go.uniwue.de/58w1r.
translated by 谷歌翻译
时间序列无处不在,因此本质上很难分析,最终以标记或群集。随着物联网(IoT)及其智能设备的兴起,数据将大量收集。收集到的数据丰富的信息,因为人们可以实时检测事故(例如汽车),或者在给定的时间段内评估伤害/疾病(例如,健康设备)。由于其混乱的性质和大量数据点,时间剧本很难手动标记。此外,数据中的新类可能会随着时间的流逝而出现(与手写数字相反),这将需要重新标记数据。在本文中,我们提出了SUSL4TS,这是一种用于半无调学习的深层生成高斯混合模型,以对时间序列数据进行分类。通过我们的方法,我们可以减轻手动标记步骤,因为我们可以检测到稀疏标记的类(半监督)并识别隐藏在数据中的新兴类(无监督)。我们通过来自不同领域的既定时间序列分类数据集证明了方法的功效。
translated by 谷歌翻译
最近的估计报告说,公司损失了其收入的5%,用于职业欺诈。由于大多数中型和大型公司都采用企业资源计划(ERP)系统来跟踪有关其业务流程的大量信息,因此研究人员过去曾表现出对通过ERP系统数据自动检测欺诈的兴趣。然而,当前在该领域的研究受到了以下事实的阻碍:ERP系统数据不能公开用于开发和比较欺诈检测方法。因此,我们努力生成包括正常业务运营和欺诈的公共ERP系统数据。我们提出了一种通过认真的游戏来生成ERP系统数据的策略,与审计专家合作建模各种欺诈场景,并与多位研究参与者一起生成模拟的库存生产公司的数据。我们将生成的数据汇总到准备使用的数据集中,以用于ERP系统中的欺诈检测,并向公众提供原始数据和汇总数据,以允许对ERP系统数据上的欺诈检测方法进行公开开发和比较。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
The future of population-based breast cancer screening is likely personalized strategies based on clinically relevant risk models. Mammography-based risk models should remain robust to domain shifts caused by different populations and mammographic devices. Modern risk models do not ensure adaptation across vendor-domains and are often conflated to unintentionally rely on both precursors of cancer and systemic/global mammographic information associated with short- and long-term risk, respectively, which might limit performance. We developed a robust, cross-vendor model for long-term risk assessment. An augmentation-based domain adaption technique, based on flavorization of mammographic views, ensured generalization to an unseen vendor-domain. We trained on samples without diagnosed/potential malignant findings to learn systemic/global breast tissue features, called mammographic texture, indicative of future breast cancer. However, training so may cause erratic convergence. By excluding noise-inducing samples and designing a case-control dataset, a robust ensemble texture model was trained. This model was validated in two independent datasets. In 66,607 Danish women with flavorized Siemens views, the AUC was 0.71 and 0.65 for prediction of interval cancers within two years (ICs) and from two years after screening (LTCs), respectively. In a combination with established risk factors, the model's AUC increased to 0.68 for LTCs. In 25,706 Dutch women with Hologic-processed views, the AUCs were not different from the AUCs in Danish women with flavorized views. The results suggested that the model robustly estimated long-term risk while adapting to an unseen processed vendor-domain. The model identified 8.1% of Danish women accounting for 20.9% of ICs and 14.2% of LTCs.
translated by 谷歌翻译
Quaternion valued neural networks experienced rising popularity and interest from researchers in the last years, whereby the derivatives with respect to quaternions needed for optimization are calculated as the sum of the partial derivatives with respect to the real and imaginary parts. However, we can show that product- and chain-rule does not hold with this approach. We solve this by employing the GHRCalculus and derive quaternion backpropagation based on this. Furthermore, we experimentally prove the functionality of the derived quaternion backpropagation.
translated by 谷歌翻译
In this work, a method for obtaining pixel-wise error bounds in Bayesian regularization of inverse imaging problems is introduced. The proposed method employs estimates of the posterior variance together with techniques from conformal prediction in order to obtain coverage guarantees for the error bounds, without making any assumption on the underlying data distribution. It is generally applicable to Bayesian regularization approaches, independent, e.g., of the concrete choice of the prior. Furthermore, the coverage guarantees can also be obtained in case only approximate sampling from the posterior is possible. With this in particular, the proposed framework is able to incorporate any learned prior in a black-box manner. Guaranteed coverage without assumptions on the underlying distributions is only achievable since the magnitude of the error bounds is, in general, unknown in advance. Nevertheless, experiments with multiple regularization approaches presented in the paper confirm that in practice, the obtained error bounds are rather tight. For realizing the numerical experiments, also a novel primal-dual Langevin algorithm for sampling from non-smooth distributions is introduced in this work.
translated by 谷歌翻译