In this paper, negatively inclined buoyant jets, which appear during the discharge of wastewater from processes such as desalination, are observed. To minimize harmful effects and assess environmental impact, a detailed numerical investigation is necessary. The selection of appropriate geometry and working conditions for minimizing such effects often requires numerous experiments and numerical simulations. For this reason, the application of machine learning models is proposed. Several models including Support Vector Regression, Artificial Neural Networks, Random Forests, XGBoost, CatBoost and LightGBM were trained. The dataset was built with numerous OpenFOAM simulations, which were validated by experimental data from previous research. The best prediction was obtained by Artificial Neural Network with an average of R2 0.98 and RMSE 0.28. In order to understand the working of the machine learning model and the influence of all parameters on the geometrical characteristics of inclined buoyant jets, the SHAP feature interpretation method was used.
translated by 谷歌翻译
在本文中,使用计算流体动力学研究了具有次级通道和肋骨的微通道设计,并与多目标优化算法耦合,以确定并提出基于观察到的热阻力和泵送功率的最佳溶液。提出了一种结合拉丁超立方体采样,基于机器学习的替代建模和多目标优化的工作流程。在寻找最佳替代物期间,考虑了随机森林,梯度增强算法和神经网络。我们证明了调整的神经网络可以做出准确的预测,并用于创建可接受的替代模型。与常规优化方法相比,优化解决方案在总体性能上显示出可忽略的差异。此外,解决方案是在原始时间的五分之一中计算的。在与对流微通道设计相同的压力极限下,生成的设计达到的温度低于10%以上。当受到温度的限制时,压降降低了25%以上。最后,通过采用Shapley添加说明技术研究了每个设计变量对热电阻和泵送功率的影响。总体而言,我们已经证明了所提出的框架具有优点,可以用作微通道散热器设计优化的可行方法。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译