我们考虑有限混合物(MFM)和Dirichlet工艺混合物(DPM)模型的贝叶斯混合物。最近的渐近理论已经确定,DPM高估了大型样本的聚类数量,并且两类模型的估计量对于不指定的群集的数量不一致,但是对有限样本分析的含义尚不清楚。拟合这些模型后的最终报告的估计通常是使用MCMC摘要技术获得的单个代表性聚类,但是尚不清楚这样的摘要估计簇的数量。在这里,我们通过模拟和对基因表达数据的应用进行了研究,发现(i)DPM甚至在有限样本中高估了簇数的数量,但仅在有限的程度上可以使用适当的摘要来纠正,并且(ii)(ii) )错误指定会导致对DPM和MFM中集群数量的高估,但是结果通常仍然可以解释。我们提供了有关MCMC摘要的建议,并建议尽管MFM的渐近性能更具吸引力,这提供了强大的动力来偏爱它们,但使用MFMS和DPMS获得的结果通常在实践中非常相似。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated excellent zero-shot generalization to new language tasks. However, effective utilization of LLMs for zero-shot visual question-answering (VQA) remains challenging, primarily due to the modality disconnection and task disconnection between LLM and VQA task. End-to-end training on vision and language data may bridge the disconnections, but is inflexible and computationally expensive. To address this issue, we propose \emph{Img2Prompt}, a plug-and-play module that provides the prompts that can bridge the aforementioned modality and task disconnections, so that LLMs can perform zero-shot VQA tasks without end-to-end training. In order to provide such prompts, we further employ LLM-agnostic models to provide prompts that can describe image content and self-constructed question-answer pairs, which can effectively guide LLM to perform zero-shot VQA tasks. Img2Prompt offers the following benefits: 1) It can flexibly work with various LLMs to perform VQA. 2)~Without the needing of end-to-end training, it significantly reduces the cost of deploying LLM for zero-shot VQA tasks. 3) It achieves comparable or better performance than methods relying on end-to-end training. For example, we outperform Flamingo~\cite{Deepmind:Flamingo2022} by 5.6\% on VQAv2. On the challenging A-OKVQA dataset, our method even outperforms few-shot methods by as much as 20\%.
translated by 谷歌翻译
Likelihood-based deep generative models have recently been shown to exhibit pathological behaviour under the manifold hypothesis as a consequence of using high-dimensional densities to model data with low-dimensional structure. In this paper we propose two methodologies aimed at addressing this problem. Both are based on adding Gaussian noise to the data to remove the dimensionality mismatch during training, and both provide a denoising mechanism whose goal is to sample from the model as though no noise had been added to the data. Our first approach is based on Tweedie's formula, and the second on models which take the variance of added noise as a conditional input. We show that surprisingly, while well motivated, these approaches only sporadically improve performance over not adding noise, and that other methods of addressing the dimensionality mismatch are more empirically adequate.
translated by 谷歌翻译
在嘈杂和致密的荧光显微镜数据中跟踪胚胎的所有核是一项具有挑战性的任务。我们建立在最新的核跟踪方法的基础上,该方法结合了弱监督的学习,从一小部分核中心点注释与整数线性程序(ILP)结合了最佳的细胞谱系提取。我们的工作专门解决了秀丽隐杆线虫胚胎记录的以下具有挑战性的特性:(1)与其他生物的基准记录相比,许多细胞分裂以及(2)很容易被误认为是细胞核的极性体。为了应付(1),我们设计并纳入了学习的细胞分裂检测器。为了应付(2),我们采用了学到的极性身体探测器。我们进一步提出了通过结构化的SVM调整自动化的ILP权重,从而减轻了对各自的网格搜索进行乏味的手动设置的需求。我们的方法的表现优于Fluo-N3DH-CE胚胎数据集上细胞跟踪挑战的先前领导者。我们报告了另外两个秀丽隐杆线虫数据集的进一步广泛的定量评估。我们将公开这些数据集作为未来方法开发的扩展基准。我们的结果表明,我们的方法产生了可观的改进,尤其是在分区事件检测的正确性以及完全正确的轨道段的数量和长度方面。代码:https://github.com/funkelab/linajea
translated by 谷歌翻译
我们解决以下动作效应预测任务。给定描绘世界初始状态和文本中表达的动作的图像,预测了动作后描绘世界状态的图像。预测应具有与输入图像相同的场景上下文。我们探讨了最近提出的GLIDE模型执行此任务的使用。Glide是一个生成性神经网络,可以合成图像的掩盖区域(涂层),以短片段为条件。我们的想法是掩盖预期动作效果的输入图像的区域。然后使用滑行以在所需动作为条件的蒙面区域内涂抹涂漆。这样,结果图像具有与输入图像相同的背景上下文,并更新以显示动作的效果。我们使用带有动作标记的自我中心视频的Epic数据集给出了实验的定性结果。
translated by 谷歌翻译
深度学习在学习高维数据的低维表示方面取得了巨大的成功。如果在感兴趣的数据中没有隐藏的低维结构,那么这一成功将是不可能的。这种存在是由歧管假设提出的,该假设指出数据在于固有维度低的未知流形。在本文中,我们认为该假设无法正确捕获数据中通常存在的低维结构。假设数据在于单个流形意味着整个数据空间的内在维度相同,并且不允许该空间的子区域具有不同数量的变异因素。为了解决这一缺陷,我们提出了多种假设的结合,该假设适应了非恒定固有维度的存在。我们从经验上验证了在常用图像数据集上的这一假设,发现确实应该允许内在维度变化。我们还表明,具有较高内在维度的类更难分类,以及如何使用这种见解来提高分类精度。然后,我们将注意力转移到该假设的影响下,在深层生成模型(DGM)的背景下。当前的大多数DGM都难以建模具有几个连接组件和/或不同固有维度的数据集建模。为了解决这些缺点,我们提出了群集的DGM,首先将数据聚集,然后在每个群集上训练DGM。我们表明,聚类的DGM可以模拟具有不同固有维度的多个连接组件,并在没有增加计算要求的情况下经验优于其非簇的非群体。
translated by 谷歌翻译
抗微生物抗性(AMR)是日益增长的公共卫生威胁,估计每年造成超过1000万人死亡,在现状预测下,到2050年,全球经济损失了100万亿美元。这些损失主要是由于治疗失败的发病率和死亡率增加,医疗程序中的AMR感染以及归因于AMR的生活质量损失所致。已经提出了许多干预措施来控制AMR的发展并减轻其传播带来的风险。本文回顾了细菌AMR管理和控制的关键方面,这些方面可以利用人工智能,机器学习以及数学和统计建模等数据技术,这些领域在本世纪已经快速发展。尽管数据技术已成为生物医学研究的组成部分,但它们对AMR管理的影响仍然很小。我们概述了使用数据技术来打击AMR,详细介绍了四个互补类别的最新进展:监视,预防,诊断和治疗。我们在生物医学研究,临床实践和“一个健康”背景下使用数据技术提供了有关当前AMR控制方法的概述。我们讨论了数据技术的潜在影响和挑战在高收入和中等收入国家中面临的实施,并建议将这些技术更容易地整合到医疗保健和公共卫生中所需的具体行动,并建议使用具体的行动部门。
translated by 谷歌翻译
在$ \ mathbb {r}^n $中观察到的自然数据通常被限制为$ m $ dimensional歧管$ \ mathcal {m} $,其中$ m <n $。当前的生成模型通过通过神经网络$ f_ \ theta映射$ m $二维潜在变量来表示此流形:\ mathbb {r}^m \ to \ mathbb {r}^n $。我们称之为Pushforward模型的此类过程产生了一个直接的限制:通常不能以单个参数化表示歧管,这意味着尝试这样做的方法将导致计算不稳定性或无法在歧管内学习概率密度。为了解决这个问题,我们建议将$ \ mathcal {m} $建模为神经隐式歧管:神经网络的零零。为了了解$ \ Mathcal {M} $中的数据分布,我们引入了受限的基于能量的模型,该模型使用Langevin Dynamics的约束变体来训练和示例在学习的歧管中。可以用歧管的算术来操纵所得模型,该模型使从业者可以采用工会和模型歧管的交叉点。在有关合成和自然数据的实验中,我们表明,受约束的EBM可以比推送模型更准确地学习具有复杂拓扑的歧管支配分布。
translated by 谷歌翻译
因果贝叶斯网络提供了重要的工具,用于在不确定性下进行推理,并可能应用于许多复杂的因果系统。结构学习算法可以告诉我们一些有关这些系统的因果结构的信息,越来越重要。在文献中,这些算法的有效性通常经过对不同样本量,超参数以及偶尔客观函数的敏感性进行测试。在本文中,我们表明,从数据中读取变量的顺序可能比这些因素对算法的准确性产生更大的影响。由于变量排序是任意的,因此它对学习图的准确性的任何重大影响都与之有关,这引发了有关算法对敏感但未对不同可变订单敏感但尚未评估的算法产生的结果的有效性的问题。
translated by 谷歌翻译
发现和参数化的潜在混杂因素分别代表了因果结构学习和密度估计中的重要和具有挑战性的问题。在本文中,我们专注于发现和学习潜在混杂因素的分布。此任务需要来自不同领域和机器学习领域的解决方案。我们结合了各种贝叶斯方法的要素,期望最大化,爬山搜索以及在因果关系不足的假设下学习的元素。我们提出了两种学习策略。一种可以最大化模型选择准确性,另一种可以提高计算效率,以换取精确度的较小降低。前一种策略适用于小型网络,后者适用于中等大小的网络。两种学习策略相对于现有解决方案都表现良好。
translated by 谷歌翻译