Machine learning is the study of computer algorithms that can automatically improve based on data and experience. Machine learning algorithms build a model from sample data, called training data, to make predictions or judgments without being explicitly programmed to do so. A variety of wellknown machine learning algorithms have been developed for use in the field of computer science to analyze data. This paper introduced a new machine learning algorithm called impact learning. Impact learning is a supervised learning algorithm that can be consolidated in both classification and regression problems. It can furthermore manifest its superiority in analyzing competitive data. This algorithm is remarkable for learning from the competitive situation and the competition comes from the effects of autonomous features. It is prepared by the impacts of the highlights from the intrinsic rate of natural increase (RNI). We, moreover, manifest the prevalence of the impact learning over the conventional machine learning algorithm.
translated by 谷歌翻译
张量网络是一种用于表达和近似大量数据的分解类型。给定的数据集,量子状态或更高维的多线性图是由较小的多线性图组成的组成和近似的。这让人联想到如何将布尔函数分解为栅极阵列:这代表了张量分解的特殊情况,其中张量输入的条目被0、1替换,并且分解化精确。相关技术的收集称为张量网络方法:该主题在几个不同的研究领域中独立开发,这些领域最近通过张量网络的语言变得相互关联。该领域中的Tantamount问题涉及张量网络的可表达性和减少计算开销。张量网络与机器学习的合并是自然的。一方面,机器学习可以帮助确定近似数据集的张量网络的分解。另一方面,可以将给定的张量网络结构视为机器学习模型。本文中,调整了张量网络参数以学习或分类数据集。在这项调查中,我们恢复了张量网络的基础知识,并解释了开发机器学习中张量网络理论的持续努力。
translated by 谷歌翻译