对开发人员的领域专业知识的准确评估对于分配适当的候选人来为项目做出贡献或参加工作职位很重要。由于潜在的候选人可以来自大型池,因此对该领域专业知识的自动评估是一个理想的目标。尽管以前的方法在单个软件项目中取得了成功,但对开发人员的领域专业知识的评估跨多个项目的贡献更具挑战性。在本文中,我们采用DOC2VEC来代表开发人员的领域专业知识作为嵌入向量。这些向量来自包含开发人员专业知识的证据的不同来源,例如对他们贡献的存储库的描述,解决历史的问题以及API在他们的委托中呼吁。我们将其命名为Dev2Vec,并证明其在代表开发人员的技术专业化方面的有效性。我们的结果表明,编码开发人员在嵌入矢量中的专业知识优于最先进的方法,并提高了F1得分高达21%。此外,我们的发现表明,开发人员的``问题解决历史''是代表开发人员在嵌入空间中的领域专业知识的最有用的信息来源。
translated by 谷歌翻译
自动程序合成是软件工程中的持久梦想。最近,Open AI和Microsoft提出了一种有希望的深度学习(DL)解决方案,称为Copilot,作为工业产品。尽管一些研究评估了副驾驶解决方案的正确性并报告其问题,但需要进行更多的经验评估,以了解开发人员如何有效地受益。在本文中,我们研究了两项不同的编程任务中副标士的功能:(1)为基本算法问题生成(和复制)正确,有效的解决方案,(2)将副副副总裁与人类程序员的建议解决方案与一组人的建议解决方案进行比较编程任务。对于前者,我们评估副铜在解决计算机科学中选定的基本问题(例如对基本数据结构的基本问题)中的性能和功能。在后者中,使用人提供的解决方案的编程问题数据集。结果表明,Copilot能够为几乎所有基本算法问题提供解决方案,但是,某些解决方案是越野车且不可复制的。此外,Copilot在组合多种方法来生成解决方案方面存在一些困难。将副驾驶员与人类进行比较,我们的结果表明,人类溶液的正确比率大于副本的正确比率,​​而副铜产生的越野车解决方案需要更少的努力来维修。尽管本研究和以前的研究中的强调,副柯洛特(Copilot)作为开发人员特别是在高级编程任务中的助手表现出局限性,但它可以为基本编程任务生成初步解决方案。
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
Numerous models have tried to effectively embed knowledge graphs in low dimensions. Among the state-of-the-art methods, Graph Neural Network (GNN) models provide structure-aware representations of knowledge graphs. However, they often utilize the information of relations and their interactions with entities inefficiently. Moreover, most state-of-the-art knowledge graph embedding models suffer from scalability issues because of assigning high-dimensional embeddings to entities and relations. To address the above limitations, we propose a scalable general knowledge graph encoder that adaptively involves a powerful tensor decomposition method in the aggregation function of RGCN, a well-known relational GNN model. Specifically, the parameters of a low-rank core projection tensor, used to transform neighborhood entities in the encoder, are shared across relations to benefit from multi-task learning and incorporate relations information effectively. Besides, we propose a low-rank estimation of the core tensor using CP decomposition to compress the model, which is also applicable, as a regularization method, to other similar linear models. We evaluated our model on knowledge graph completion as a common downstream task. We train our model for using a new loss function based on contrastive learning, which relieves the training limitation of the 1-N method on huge graphs. We improved RGCN performance on FB15-237 by 0.42% with considerably lower dimensionality of embeddings.
translated by 谷歌翻译
The Universal Feature Selection Tool (UniFeat) is an open-source tool developed entirely in Java for performing feature selection processes in various research areas. It provides a set of well-known and advanced feature selection methods within its significant auxiliary tools. This allows users to compare the performance of feature selection methods. Moreover, due to the open-source nature of UniFeat, researchers can use and modify it in their research, which facilitates the rapid development of new feature selection algorithms.
translated by 谷歌翻译
本文提出了一种快速准确的表面正常估计方法,可以直接在深度图(有组织的点云)上使用。表面正常估计过程被配制为封闭形式的表达。为了减少测量噪声的效果,平均操作以多方向方式使用。多方向正常估计过程将在要有效实施的下一步中进行重新重新制定。最后,提出了一种简单而有效的方法,以消除深度不连续性下错误的正常估计。将所提出的方法与众所周知的表面正常估计算法进行比较。结果表明,所提出的算法不仅在准确性方面优于基线算法,而且还足够快,可以在实时应用中使用。
translated by 谷歌翻译
尽管在利用深度学习来自动化胸部X光片解释和疾病诊断任务方面取得了进展,但顺序胸部X射线(CXR)之间的变化受到了有限的关注。监测通过胸部成像可视化的病理的进展在解剖运动估计和图像注册中构成了几个挑战,即在空间上对齐这两个图像并在变化检测中对时间动力学进行建模。在这项工作中,我们提出了Chexrelnet,这是一种可以跟踪两个CXR之间纵向病理关系的神经模型。Chexrelnet结合了局部和全球视觉特征,利用图像间和图像内的解剖信息,并学习解剖区域属性之间的依赖性,以准确预测一对CXR的疾病变化。与基准相比,胸部成像组数据集的实验结果显示下游性能提高。代码可从https://github.com/plan-lab/chexrelnet获得
translated by 谷歌翻译
为了克服多个对象跟踪任务中的挑战,最近的算法将交互线索与运动和外观特征一起使用。这些算法使用图形神经网络或变压器来提取导致高计算成本的交互功能。在本文中,提出了一种基于几何特征的新型交互提示,旨在检测遮挡和重新识别计算成本低的丢失目标。此外,在大多数算法中,摄像机运动被认为可以忽略不计,这是一个强有力的假设,并不总是正确的,并且导致目标转换或目标不匹配。在本文中,提出了一种测量相机运动和删除其效果的方法,可有效地降低相机运动对跟踪的影响。该算法在MOT17和MOT20数据集上进行了评估,并在MOT20上实现了MOT17的最先进性能和可比较的结果。该代码也可以公开使用。
translated by 谷歌翻译
我们提出了一种适用于许多场景中的新方法,理解了适应Monte Carlo Tree Search(MCTS)算法的问题,该算法最初旨在学习玩高州复杂性的游戏。从生成的建议库中,我们的方法共同选择并优化了最小化目标项的建议。在我们的第一个从点云中进行平面图重建的应用程序中,我们的方法通过优化将深度网络预测的适应性组合到房间形状上的目标函数,选择并改进了以2D多边形为模型的房间建议。我们还引入了一种新型的可区分方法来渲染这些建议的多边形形状。我们对最近且具有挑战性的结构3D和Floor SP数据集的评估对最先进的表现有了显着改进,而没有对平面图配置施加硬性约束也没有假设。在我们的第二个应用程序中,我们扩展了从颜色图像重建一般3D房间布局并获得准确的房间布局的方法。我们还表明,可以轻松扩展我们的可区分渲染器,以渲染3D平面多边形和多边形嵌入。我们的方法在MatterPort3D-Layout数据集上显示了高性能,而无需在房间布局配置上引入硬性约束。
translated by 谷歌翻译
学龄前评估至关重要,因为它为教师和父母提供了有关儿童成长和成长的关键知识。冠状病毒大流行强调了在线评估学龄前儿童的必要性。这种在线测试需要各种技术,从Web应用程序开发到各种标准(例如语音识别)的各种人工智能模型。由于声学的波动和儿童和成人之间语音频率的差异,因此很难采用自动语音识别(ASR)系统,因为它们是在成年人的声音上预先训练的。此外,培训新模型需要大量数据。为了解决此问题,我们使用具有新的预训练目标的WAV2VEC 2.0模型为认知测试系统构建了ASR,称为随机频率音调(RFP),而我们的新数据集则在无意义的单词(MW)和New DataSet上进行了测试(MW)和快速自动命名(RAN)测试。由于这两个测试的特殊性,我们探索了许多模型,包括卷积神经网络(CNN)和WAV2VEC 2.0模型。我们的新方法在CommonVoice数据集的波斯部分上达到6.45的单词错误率(WER)。此外,我们的新方法在零和少数场景中产生积极的结果。
translated by 谷歌翻译