光有许多可以通过视觉传感器被动测量的特性。色带分离波长和强度可以说是单眼6D对象姿态估计的最常用的波长。本文探讨了互补偏振信息的互补信息,即光波振荡的方向,可以影响姿态预测的准确性。一种混合模型,利用数据驱动的学习策略共同利用物理代理,并在具有不同量的光度复杂度的物体上进行设计和仔细测试。我们的设计不仅显着提高了与光度 - 最先进的方法相关的姿态精度,而且还使对象姿势估计用于高反射性和透明的物体。
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译
可以使用具有快速有效分割网络的深度学习方法来实施医疗图像分割。单板计算机(SBC)由于内存和处理限制而难以用于训练深网。诸如Google Edge TPU之类的特定硬件使其适合使用复杂的预训练网络进行实时预测。在这项工作中,我们研究了两个SBC的性能,具有和不进行硬件加速度进行底面图像分割,尽管这项研究的结论可以通过其他类型的医学图像的深层神经网络应用于分割。为了测试硬件加速的好处,我们使用先前已发布的工作中的网络和数据集,并通过使用具有超声甲状腺图像的数据集进行测试来概括它们。我们在SBC中测量预测时间,并将其与基于云的TPU系统进行比较。结果表明,使用Edge TPU,机器学习加速SBC的可行性可加速光盘和杯赛分段,每图像可获得低于25毫秒的时间。
translated by 谷歌翻译
联合学习(FL)是一种使用跨设备分布的数据训练模型的技术。差异隐私(DP)为敏感数据提供了正式的隐私保证。我们的目标是在使用FL和DP保护隐私的同时,在计算受限设备上训练大型神经网络语言模型(NNLM)。但是,随着模型大小的增长,引入模型的DP噪声增加,这通常会阻止收敛。我们提出了部分嵌入更新(PEU),这是一种新颖的技术,可以通过降低有效载荷大小来降低噪声。此外,我们采用低级适应(LORA)和噪声对比估计(NCE)来减少计算受限设备上大型模型的记忆需求。这种技术的组合使得可以在保留准确性和隐私的同时训练大型唱机语言模型。
translated by 谷歌翻译
在本文中,我们推出了一种新的通用依赖树木库,用于亚马逊尼亚的一种濒危语言:秘鲁在秘鲁说的Panoan语言Kakataibo。我们首先讨论实施的协作方法,事实证明,在本科生的计算语言课程的背景下创建树库有效。然后,我们描述了树库的一般细节以及针对拟议的注释实施的特定于语言的注意事项。我们最终对词性标记和句法依赖性解析进行了一些实验。我们专注于单语和转移学习设置,在这里我们研究了另一种Panoan语言资源的Shipibo-Konibo Treebos的影响。
translated by 谷歌翻译
为了使腿部机器人执行敏捷,高度动态和接触率丰富的动作,需要对未经线性动力学的启动不足的复合系统进行全身轨迹计算。在这项工作中,我们介绍了Horizon的动手应用,这是一种针对机器人系统量身定制的新型开源框架,可提供一系列工具来简化动态运动的生成。Horizon在涉及多个机器人平台的广泛行为上进行了测试:我们介绍了其构建块,并描述了使用其直观和直接的API生成三个复杂动作的完整过程。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
精确的温度测量对于适当的监测和控制工业炉是必不可少的。然而,测量不确定性是这种关键参数的风险。当使用谱带辐射热度技术时,必须考虑某些乐器和环境误差,例如目标表面发射率的不确定性,反射周围物体的辐射或大气吸收和发射,以命名几个。可以使用测量模型来分离测量辐射的不期望的贡献,也称为纠错模型。本文介绍了石油化学炉场景中的温度测量期间预算重要误差和不确定性的方法。还通过基于深度学习的测量校正模型来介绍连续监控系统,以允许域专家实时分析炉的操作。为了验证所提出的系统的功能,提出了一种在石化工厂中的真实应用案例。所提出的解决方案展示了精确的工业炉监测的可行性,从而增加了运行安全性并提高了这种能量密集型系统的效率。
translated by 谷歌翻译
圆角焊接是该行业中最广泛类型的焊接之一,仍然通过接触手动或自动进行。本文旨在描述具有U和L形结构的非接触式圆角焊接机器人的在线编程系统,这响应了第四工业革命的需求。在本文中,作者提出了一种在线机器人编程方法,其消除了传统上在机器人焊接中执行的不必要步骤,使得操作者仅执行三个步骤来完成焊接任务。首先,选择焊接件。然后,进入焊接参数。最后,它将自动生成的程序发送到机器人。该系统最终设法在比比较方法更有效的准备时间中使用所提出的方法进行圆角焊接任务。为此,除了六个轴工业机器人手臂之外,还使用了与其他系统相比使用减少数量的组件,例如结构化光3D相机,两个计算机和集中器。系统的操作复杂性尽可能减少。据作者所知,没有能够执行圆角焊接过程的在线机器人编程系统的科学或商业证据,简化了该过程,使其对操作员完全透明,并在行业4.0范例中陷入框架。它的商业潜力主要在于一种能够适应任何工业圆角焊接工作和任何可以容纳它的支架的柔性系统中的简单和低成本。
translated by 谷歌翻译
自我监督的学习是一种从自然数据中学习有用表示的强大方法。还建议作为在人类中建立视觉表现的一种可能手段,但具体的目标和算法是未知的。目前,大多数自我监督的方法都鼓励系统学习与其他图像相反的相同图像的不同变换的不变表示。然而,这种变换通常是非生物学上的,并且通常由具有随机裁剪和颜色抖动之类的具有相识的感知方案组成。在本文中,我们试图反向工程师这些增强术语更加生物学或感知可符号,同时仍然赋予鼓励鲁棒代表的相同益处。批判性地,我们发现随机裁剪可以被皮质倍率代替,并且图像的扫视样品也可以帮助表示学习。这些转变的可行性表明,生物视觉系统可以实施自我监督的潜在方式。此外,它们打破了许多计算机视觉算法中使用的广泛接受的空间均匀的处理假设,这表明在人类和机器中的空间自适应计算的作用。我们可以在此处找到我们的代码和演示。
translated by 谷歌翻译