近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译
The necessity of data driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a Healthcare Provider Facility or a Hospital (from here on termed as Facility) Market Share is of key importance. This pilot study aims at developing a data driven Machine Learning - Regression framework which aids strategists in formulating key decisions to improve the Facilitys Market Share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study; and the data spanning across 60 key Facilities in Washington State and about 3 years of historical data is considered. In the current analysis Market Share is termed as the ratio of facility encounters to the total encounters among the group of potential competitor facilities. The current study proposes a novel two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. The proposed method to identify pool of competitors in current analysis, develops Directed Acyclic Graphs (DAGs), feature level word vectors and evaluates the key connected components at facility level. This technique is robust since its data driven which minimizes the bias from empirical techniques. Post identifying the set of competitors among facilities, developed Regression model to predict the Market share. For relative quantification of features at a facility level, incorporated SHAP a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share.
translated by 谷歌翻译
在本文中,我们提出了一条新型的管道,该管道利用语言基础模型进行时间顺序模式挖掘,例如人类的移动性预测任务。例如,在预测利益(POI)客户流量的任务中,通常从历史日志中提取访问次数,并且仅使用数值数据来预测访客流。在这项研究中,我们直接对包含各种信息的自然语言输入执行预测任务,例如数值和上下文的语义信息。引入特定的提示以将数值时间序列转换为句子,以便可以直接应用现有的语言模型。我们设计了一个Auxmoblcast管道,用于预测每个POI中的访问者数量,将辅助POI类别分类任务与编码器架构结构集成在一起。这项研究提供了所提出的Auxmoblcast管道有效性以发现移动性预测任务中的顺序模式的经验证据。在三个现实世界数据集上评估的结果表明,预训练的语言基础模型在预测时间序列中也具有良好的性能。这项研究可以提供有远见的见解,并为预测人类流动性提供新的研究方向。
translated by 谷歌翻译
虽然小说计算机视觉架构正在获得牵引力,但模型架构的影响往往与培训方法的变化或探索有关。基于身份映射的架构Resnets和Densenets在图像分类任务中承诺路径断开结果,并且如果给出的数据相当有限,甚至现在甚至是现在的方法。考虑到有限资源的易培训,这项工作重新审视ERSNET并通过使用混合数据增强作为正则化和调整超参数来改善Reset50 \ Cite {Resnets}。
translated by 谷歌翻译
从一个人的错误中学习是一种有效的人类学习技术,学习者更多地关注在犯错误的主题上,以便加深他们的理解。在本文中,我们调查这种人类学习策略是否可以应用于机器学习。我们提出了一种新的机器学习方法,称为来自错误(LFM)的学习,其中学习者通过在修订期间更多地关注错误来提高其学习的能力。我们制定LFM作为三阶段优化问题:1)学习者学习;2)学习者重新学习专注于错误,而且;3)学习者验证其学习。我们开发了一种有效的算法来解决LFM问题。我们将LFM框架应用于CiFar-10,CiFar-100和ImageNet上的神经架构搜索。实验结果强烈展示了我们模型的有效性。
translated by 谷歌翻译
基于机器学习的决策支持系统的利用率增加强调了导致所有利益相关者准确和公平的预测的必要性。在这项工作中,我们提出了一种新的方法,可以在训练期间提高神经网络模型的公平性。我们介绍了一系列公平性,增强了我们与传统的二进制交叉熵基准损耗一起使用的正规化组件。这些损失函数基于偏置奇偶校验分数(BPS),一个分数有助于使用单个数字量化模型中的偏差。在目前的工作中,我们调查这些正则化组件对偏见的行为和效果。我们在累犯预测任务以及基于人口普查的成人收入数据集的上下文中部署它们。结果表明,对于公平损失功能的良好选择,我们可以减少训练有素的模型的偏置,而不会降低精度,即使在不平衡数据集中也是如此。
translated by 谷歌翻译