The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
Adversarial attacks can easily fool object recognition systems based on deep neural networks (DNNs). Although many defense methods have been proposed in recent years, most of them can still be adaptively evaded. One reason for the weak adversarial robustness may be that DNNs are only supervised by category labels and do not have part-based inductive bias like the recognition process of humans. Inspired by a well-known theory in cognitive psychology -- recognition-by-components, we propose a novel object recognition model ROCK (Recognizing Object by Components with human prior Knowledge). It first segments parts of objects from images, then scores part segmentation results with predefined human prior knowledge, and finally outputs prediction based on the scores. The first stage of ROCK corresponds to the process of decomposing objects into parts in human vision. The second stage corresponds to the decision process of the human brain. ROCK shows better robustness than classical recognition models across various attack settings. These results encourage researchers to rethink the rationality of currently widely-used DNN-based object recognition models and explore the potential of part-based models, once important but recently ignored, for improving robustness.
translated by 谷歌翻译
Score-based modeling through stochastic differential equations (SDEs) has provided a new perspective on diffusion models, and demonstrated superior performance on continuous data. However, the gradient of the log-likelihood function, i.e., the score function, is not properly defined for discrete spaces. This makes it non-trivial to adapt \textcolor{\cdiff}{the score-based modeling} to categorical data. In this paper, we extend diffusion models to discrete variables by introducing a stochastic jump process where the reverse process denoises via a continuous-time Markov chain. This formulation admits an analytical simulation during backward sampling. To learn the reverse process, we extend score matching to general categorical data and show that an unbiased estimator can be obtained via simple matching of the conditional marginal distributions. We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
完全监督的对数异常检测方法需要大量标记的数据才能实现有希望的性能。因此,如何减轻注释大量未标记的日志数据的沉重负担受到了很多关注。最近,已经提出了许多半监督对数异常检测方法,以借助于标记的正常数据解析的模板来降低注释成本。但是,这些方法通常独立考虑每个关键字,这无视日志事件中关键字之间的相关性以及日志序列之间的上下文关系。在本文中,我们提出了一个新型的弱监督的对数异常检测框架,名为Loglg,以探索序列中关键字之间的语义连接。具体而言,我们设计了一个迭代过程,首先提取未标记的日志的关键字以在每次迭代中构造日志事件图。然后,我们构建一个子记录注释,以更改为未标记的日志序列生成伪标签的目的,以注释相应的log-subgraphs。为了改善注释质量,我们采取了自我监督的任务来预先培训子图注释。之后,使用子图注释者生成的伪标签训练对数异常检测模型。在分类结果的条件下,我们从分类的日志序列重新提取关键字,并为下一个迭代更新日志事件图。五个基准的实验验证了LogLG在未标记的日志数据上检测异常的有效性,并证明与现有的半监督方法相比,Loglg作为最新的弱监督方法,可以取得重大改进。
translated by 谷歌翻译
命名实体识别(NER)任务旨在识别属于人,位置,组织等预定语义类型的文本中的实体。平面实体的最新解决方案NER通常因捕获捕获基础文本中的细粒语义信息。现有的基于跨度的方法克服了这一限制,但是计算时间仍然是一个问题。在这项工作中,我们提出了一个基于跨度的新型NER框架,即全球指针(GP),该框架通过乘法注意机制来利用相对位置。最终目标是实现一个全球观点,以考虑开始和最终位置以预测实体。为此,我们设计了两个模块来识别给定实体的头部和尾部,以使训练和推理过程之间的不一致。此外,我们引入了一种新型的分类损失函数,以解决不平衡标签问题。在参数方面,我们引入了一种简单但有效的近似方法来减少训练参数。我们在各种基准数据集上广泛评估GP。我们的广泛实验表明,GP可以胜过现有的解决方案。此外,实验结果表明,与软马克斯和熵替代方案相比,引入的损失函数的功效。
translated by 谷歌翻译
在混合完成的多任务,多域和多模式数据上进行预训练仍然是视力感知预训练的开放挑战。在本文中,我们提出了GPPF,这是一个普遍的感知预训练框架,预先培训任务级的动态网络,该网络是由在标签的多任务和多域数据集上的各层知识“乐高”组成的。通过检查人类在复杂环境中学习的先天能力,我们识别并将三个关键要素转移到深网上:(1)同时暴露于每个批次中的各种交叉任务和跨域信息。 (2)由知识共享驱动的单独的乐高单元中的分区知识存储。 (3)用于训练和下游任务的乐高单元子集的稀疏激活。值得注意的是,由于其在输入形状,损失功能,输出格式,数据分布等方面的差异,不同视觉任务的联合培训是不平凡的。因此,我们创新地开发了插件的多任务培训算法,该培训算法是支持单个迭代多个任务(SIMT)同时培训。 Simt用大型多任务多任务数据集为预训练的基础奠定了基础,并且被证明对于我们的GPPF实验中的稳定培训至关重要。令人兴奋的是,详尽的实验表明,我们的GPPF-R50型号在GPPF-15M中的8个预训练预培训任务的强大基线上取得了显着改善,并在22个下游任务中收获了一系列SOTA,并具有相似的计算预算。我们还验证了GPPF对SOTA视觉变压器的概括能力,并具有一致的改进。这些可靠的实验结果充分证明了我们新颖的GPPF框架提供的有效的知识学习,存储,共享和转移。
translated by 谷歌翻译
稀疏奖励学习通常在加强学习(RL)方面效率低下。 Hindsight Experience重播(她)已显示出一种有效的解决方案,可以处理低样本效率,这是由于目标重新标记而导致的稀疏奖励效率。但是,她仍然有一个隐含的虚拟阳性稀疏奖励问题,这是由于实现目标而引起的,尤其是对于机器人操纵任务而言。为了解决这个问题,我们提出了一种新型的无模型连续RL算法,称为Relay-HER(RHER)。提出的方法首先分解并重新布置原始的长马任务,以增量复杂性为新的子任务。随后,多任务网络旨在以复杂性的上升顺序学习子任务。为了解决虚拟阳性的稀疏奖励问题,我们提出了一种随机混合的探索策略(RME),在该策略中,在复杂性较低的人的指导下,较高复杂性的子任务的实现目标很快就会改变。实验结果表明,在五个典型的机器人操纵任务中,与香草盖相比,RHER样品效率的显着提高,包括Push,Pickandplace,抽屉,插入物和InstaclePush。提出的RHER方法还应用于从头开始的物理机器人上的接触式推送任务,成功率仅使用250集达到10/10。
translated by 谷歌翻译
本文介绍了一种数据驱动的形状完成方法,该方法着重于完成3D形状缺失区域的几何细节。我们观察到,现有的生成方法缺乏训练数据和表示能力,可以通过复杂的几何形状和拓扑合成合理的,细粒度的细节。我们的关键见解是从部分输入复制和变形补丁以完成缺失区域。这使我们能够保留本地几何特征的风格,即使它与培训数据有很大不同。我们的全自动方法分为两个阶段。首先,我们学会从输入形状检索候选补丁。其次,我们选择并变形了一些检索到的候选者,以无缝将它们融合到完整的形状中。该方法结合了两种最常见的完成方法的优点:基于相似性的单稳定性完成,以及通过学习形状空间来完成。我们通过从部分输入中检索贴片来利用重复模式,并通过使用神经网络来指导检索和变形步骤来学习全球结构先验。实验结果表明,我们的方法在多个数据集和形状类别上的表现非常优于基线。代码和数据可在https://github.com/gitbosun/patchrd上找到。
translated by 谷歌翻译