This paper studies how to flexibly integrate reconstructed 3D models into practical 3D modeling pipelines such as 3D scene creation and rendering. Due to the technical difficulty, one can only obtain rough 3D models (R3DMs) for most real objects using existing 3D reconstruction techniques. As a result, physically-based rendering (PBR) would render low-quality images or videos for scenes that are constructed by R3DMs. One promising solution would be representing real-world objects as Neural Fields such as NeRFs, which are able to generate photo-realistic renderings of an object under desired viewpoints. However, a drawback is that the synthesized views through Neural Fields Rendering (NFR) cannot reflect the simulated lighting details on R3DMs in PBR pipelines, especially when object interactions in the 3D scene creation cause local shadows. To solve this dilemma, we propose a lighting transfer network (LighTNet) to bridge NFR and PBR, such that they can benefit from each other. LighTNet reasons about a simplified image composition model, remedies the uneven surface issue caused by R3DMs, and is empowered by several perceptual-motivated constraints and a new Lab angle loss which enhances the contrast between lighting strength and colors. Comparisons demonstrate that LighTNet is superior in synthesizing impressive lighting, and is promising in pushing NFR further in practical 3D modeling workflows. Project page: https://3d-front-future.github.io/LighTNet .
translated by 谷歌翻译
图神经网络(GNN)从材料科学家那里引起了越来越多的关注,并证明了建立结构和属性之间的连接的高能力。但是,只有仅提供的未删除结构作为输入,很少有GNN模型可以预测带有可接受的误差水平的放松配置的热力学特性。在这项工作中,我们开发了基于Dimenet ++和混合密度网络的多任务(MT)体系结构,以提高此类任务的性能。将基于CU的单原子合金催化剂的共吸附作为例证,我们表明我们的方法可以可靠地估计CO的吸附能,其平均绝对误差为0.087 eV,从初始CO的吸附结构中,而无需昂贵的第一原则计算。此外,与其他最先进的GNN方法相比,我们的模型在预测具有看不见的底物表面或掺杂物种的催化性能时具有提高的概括能力。我们表明,拟议的GNN策略可以促进催化剂发现。
translated by 谷歌翻译
大多数图形之间的作品都是在具有交叉注意机制的编码器框架上构建的。最近的研究表明,对输入图结构进行明确建模可以显着改善性能。但是,香草结构编码器无法在所有解码步骤的单个正向通道中捕获所有专业信息,从而导致语义表示不准确。同时,输入图在交叉注意中作为无序序列被扁平,忽略了原始图形结构。结果,解码器中获得的输入图上下文向量可能存在缺陷。为了解决这些问题,我们提出了一种结构感知的交叉注意(SACA)机制,以在每个解码步骤中以结构意识的方式重新编码在新生成的上下文上的输入图表示条件。我们进一步调整SACA,并引入其变体动态图修剪(DGP)机制,以在解码过程中动态下降无关的节点。我们在两个图形数据集(LDC2020T02和ENT-DESC)上实现了新的最新结果,但计算成本仅略有增加。
translated by 谷歌翻译
最近,与传统标准(例如JPEG,JPEG2000和BPG)相比,学到的图像压缩方法已经迅速发展,并表现出出色的速率延伸性能。但是,基于学习的方法遭受了高计算成本的损失,这对在资源有限的设备上部署无济于事。为此,我们提出了换档 - 附加并行模块(SAPMS),包括用于编码器的SAPM-E和解码器的SAPM-D,以大大减少能源消耗。具体而言,可以将它们视为插入式播放组件,以升级现有的基于CNN的体系结构,与加法分支相比,Shift分支用于提取大颗粒功能。此外,我们彻底分析了潜图的概率分布,并建议使用拉普拉斯混合物的可能性以进行更准确的熵估计。实验结果表明,所提出的方法可以在PSNR和MS-SSSIM指标上与卷积对应物的相当甚至更好的性能,并减少2倍的能量。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
这项工作适用于最低贝叶斯风险(MBR)解码,以优化翻译质量的各种自动化指标。机器翻译中的自动指标最近取得了巨大的进步。特别是,在人类评级(例如BLEurt,或Comet)上微调,在与人类判断的相关性方面是优于表面度量的微调。我们的实验表明,神经翻译模型与神经基于基于神经参考度量,BLEURT的组合导致自动和人类评估的显着改善。通过与经典光束搜索输出不同的翻译获得该改进:这些翻译的可能性较低,并且较少受到Bleu等表面度量的青睐。
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译