血管内超声和光学相干断层扫描可广泛用于表征冠状动脉狭窄,并提供关键的血管参数以优化经皮干预。同时提供血管内极化敏感的光学相干断层扫描(PS-OCT),可提供血管结构的高分辨率横截面图像,同时还揭示了胶原蛋白和平滑肌等优惠的组织成分,从而增强了斑块表征。对这些特征的自动解释有望促进对冠状动脉瘤的自然历史和意义的客观临床研究。在这里,我们提出了一种使用新的多项损耗函数进行优化的卷积神经网络模型,除了导丝和斑块阴影外,还对管腔,内部和媒体层进行了分类。我们证明,我们的多类分类模型在检测冠状动脉解剖层方面优于最先进的方法。此外,所提出的模型将两类的常见成像伪像,并检测到增厚血管壁区域内的解剖层,这些层被其他研究排除在分析之外。源代码和受过训练的模型可在https://github.com/mhaft/octseg上公开获得
translated by 谷歌翻译
统计监督的学习框架假设了一个输入输出集,其联合概率分布可可靠地由培训数据集表示。然后,要求学习者从培训数据集的输入输出对中输出从培训数据集的输入规则。在这项工作中,我们在机器学习的背景下,我们提供了对渐近式式属性属性(AEP)\ citep {Shannon:1948}的有意义的见解,并阐明了其一些潜在的后果,以实现几次学习。我们为信息理论AEP下的可靠学习提供了理论保证,以及相对于样本量的概括错误。然后,我们专注于高效的复发性神经网(RNN)框架,并提出了用于几次学习的降低渗透算法。我们还提出了RNN的数学直觉,作为稀疏编码求解器的近似值。我们通过图像脱张和光学相干断层扫描(OCT)示例验证所提出方法的适用性,鲁棒性和计算效率。我们的实验结果表明,改善学习模型的样本效率,概括和时间复杂性的显着潜力,因此可以利用实时应用。
translated by 谷歌翻译
本文介绍了一个控制 - 理论框架,稳定地结合了在线学习的最佳反馈策略,以控制不确定的非线性系统。给定有界范围内的未知参数,所产生的自适应控制法保证闭环系统的融合到零成本的状态。在通过在线调整学习率设计最佳政策和价值函数时,拟议的框架能够采用确定性的等价原则 - 一种保证稳定学习和控制所需的机制。尽管存在参数不确定度,但熟悉的山地车问题证明了这种方法,在那里显示出近乎最佳的行为。
translated by 谷歌翻译
这项工作开发了一种新的直接自适应控制框架,将确定性等效原理扩展到具有无与伦比的模型不确定性的一般非线性系统。该方法在线调整适应速率,以消除参数估计瞬变对闭环稳定性的影响。如果已知相应的模型参数化Lyapunov函数或收缩度量,则该方法可以立即结合先前设计或学习的反馈策略。具有无与伦比的不确定性的各种非线性系统的仿真结果证明了这种方法。
translated by 谷歌翻译
Array programming provides a powerful, compact, expressive syntax for accessing, manipulating, and operating on data in vectors, matrices, and higher-dimensional arrays [1]. NumPy is the primary array programming library for the Python language [2,3,4,5]. It plays an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, material science, engineering, finance, and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves [6] and the first imaging of a black hole [7].Here we show how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring, and analyzing scientific data. NumPy is the foundation upon which the entire scientific Python universe is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Because of its central position in the ecosystem, NumPy increasingly plays the role of an interoperability layer between these new array computation libraries.
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译