正交统计学习和双机器学习已成为在存在滋扰成分的情况下,作为两阶段统计预测的一般框架。我们对具有满足自我符合性能的损失功能的正交统计学习方法的过量风险建立了非扰动界限。我们的界限在提升强凸度的假设时,通过维数因子来改善现有界限。我们用来自多个治疗效应估计的示例和广义部分线性建模来说明结果。
translated by 谷歌翻译
我们推出了一般,但简单,尖锐的界限,用于广泛的因果参数的省略可变偏置,可以被识别为结果的条件期望函数的线性功能。这些功能包括许多传统的因果推断研究中的调查目标,例如(加权)平均潜在结果,平均治疗效果(包括亚组效应,例如对处理的效果),(加权)平均值来自协变态分布的转变的衍生品和政策影响 - 所有是一般的非参数因果模型。我们的建设依赖于目标功能的riesz-frechet表示。具体而言,我们展示了偏差的绑定如何仅取决于潜在变量在结果中创建的附加变型以及用于感兴趣的参数的RIESZ代表。此外,在许多重要病例中(例如,部分线性模型中的平均治疗效果,或在具有二元处理的不可分配模型中),所示的界定依赖于两个易于解释的数量:非参数部分$ r ^ 2 $(Pearson的相关性与治疗和结果的未观察变量的比例“。因此,对省略变量的最大解释力(在解释处理和结果变化时)的简单合理性判断足以将整体界限放置在偏置的尺寸上。最后,利用脱叠机器学习,我们提供灵活有效的统计推理方法,以估计从观察到的分布识别的界限的组件。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
User equipment is one of the main bottlenecks facing the gaming industry nowadays. The extremely realistic games which are currently available trigger high computational requirements of the user devices to run games. As a consequence, the game industry has proposed the concept of Cloud Gaming, a paradigm that improves gaming experience in reduced hardware devices. To this end, games are hosted on remote servers, relegating users' devices to play only the role of a peripheral for interacting with the game. However, this paradigm overloads the communication links connecting the users with the cloud. Therefore, service experience becomes highly dependent on network connectivity. To overcome this, Cloud Gaming will be boosted by the promised performance of 5G and future 6G networks, together with the flexibility provided by mobility in multi-RAT scenarios, such as WiFi. In this scope, the present work proposes a framework for measuring and estimating the main E2E metrics of the Cloud Gaming service, namely KQIs. In addition, different machine learning techniques are assessed for predicting KQIs related to Cloud Gaming user's experience. To this end, the main key quality indicators (KQIs) of the service such as input lag, freeze percent or perceived video frame rate are collected in a real environment. Based on these, results show that machine learning techniques provide a good estimation of these indicators solely from network-based metrics. This is considered a valuable asset to guide the delivery of Cloud Gaming services through cellular communications networks even without access to the user's device, as it is expected for telecom operators.
translated by 谷歌翻译
Visual representations can be defined as the activations of neuronal populations in response to images. The activation of a neuron as a function over all image space has been described as a "tuning landscape". As a function over a high-dimensional space, what is the structure of this landscape? In this study, we characterize tuning landscapes through the lens of level sets and Morse theory. A recent study measured the in vivo two-dimensional tuning maps of neurons in different brain regions. Here, we developed a statistically reliable signature for these maps based on the change of topology in level sets. We found this topological signature changed progressively throughout the cortical hierarchy, with similar trends found for units in convolutional neural networks (CNNs). Further, we analyzed the geometry of level sets on the tuning landscapes of CNN units. We advanced the hypothesis that higher-order units can be locally regarded as isotropic radial basis functions, but not globally. This shows the power of level sets as a conceptual tool to understand neuronal activations over image space.
translated by 谷歌翻译
With the ever-growing model size and the limited availability of labeled training data, transfer learning has become an increasingly popular approach in many science and engineering domains. For classification problems, this work delves into the mystery of transfer learning through an intriguing phenomenon termed neural collapse (NC), where the last-layer features and classifiers of learned deep networks satisfy: (i) the within-class variability of the features collapses to zero, and (ii) the between-class feature means are maximally and equally separated. Through the lens of NC, our findings for transfer learning are the following: (i) when pre-training models, preventing intra-class variability collapse (to a certain extent) better preserves the intrinsic structures of the input data, so that it leads to better model transferability; (ii) when fine-tuning models on downstream tasks, obtaining features with more NC on downstream data results in better test accuracy on the given task. The above results not only demystify many widely used heuristics in model pre-training (e.g., data augmentation, projection head, self-supervised learning), but also leads to more efficient and principled fine-tuning method on downstream tasks that we demonstrate through extensive experimental results.
translated by 谷歌翻译
Recently, there has been an interest in improving the resources available in Intrusion Detection System (IDS) techniques. In this sense, several studies related to cybersecurity show that the environment invasions and information kidnapping are increasingly recurrent and complex. The criticality of the business involving operations in an environment using computing resources does not allow the vulnerability of the information. Cybersecurity has taken on a dimension within the universe of indispensable technology in corporations, and the prevention of risks of invasions into the environment is dealt with daily by Security teams. Thus, the main objective of the study was to investigate the Ensemble Learning technique using the Stacking method, supported by the Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) algorithms aiming at an optimization of the results for DDoS attack detection. For this, the Intrusion Detection System concept was used with the application of the Data Mining and Machine Learning Orange tool to obtain better results
translated by 谷歌翻译
With the rise in high resolution remote sensing technologies there has been an explosion in the amount of data available for forest monitoring, and an accompanying growth in artificial intelligence applications to automatically derive forest properties of interest from these datasets. Many studies use their own data at small spatio-temporal scales, and demonstrate an application of an existing or adapted data science method for a particular task. This approach often involves intensive and time-consuming data collection and processing, but generates results restricted to specific ecosystems and sensor types. There is a lack of widespread acknowledgement of how the types and structures of data used affects performance and accuracy of analysis algorithms. To accelerate progress in the field more efficiently, benchmarking datasets upon which methods can be tested and compared are sorely needed. Here, we discuss how lack of standardisation impacts confidence in estimation of key forest properties, and how considerations of data collection need to be accounted for in assessing method performance. We present pragmatic requirements and considerations for the creation of rigorous, useful benchmarking datasets for forest monitoring applications, and discuss how tools from modern data science can improve use of existing data. We list a set of example large-scale datasets that could contribute to benchmarking, and present a vision for how community-driven, representative benchmarking initiatives could benefit the field.
translated by 谷歌翻译
Graphic layout designs play an essential role in visual communication. Yet handcrafting layout designs are skill-demanding, time-consuming, and non-scalable to batch production. Although generative models emerge to make design automation no longer utopian, it remains non-trivial to customize designs that comply with designers' multimodal desires, i.e., constrained by background images and driven by foreground contents. In this study, we propose \textit{LayoutDETR} that inherits the high quality and realism from generative modeling, in the meanwhile reformulating content-aware requirements as a detection problem: we learn to detect in a background image the reasonable locations, scales, and spatial relations for multimodal elements in a layout. Experiments validate that our solution yields new state-of-the-art performance for layout generation on public benchmarks and on our newly-curated ads banner dataset. For practical usage, we build our solution into a graphical system that facilitates user studies. We demonstrate that our designs attract more subjective preference than baselines by significant margins. Our code, models, dataset, graphical system, and demos are available at https://github.com/salesforce/LayoutDETR.
translated by 谷歌翻译
Person recognition at a distance entails recognizing the identity of an individual appearing in images or videos collected by long-range imaging systems such as drones or surveillance cameras. Despite recent advances in deep convolutional neural networks (DCNNs), this remains challenging. Images or videos collected by long-range cameras often suffer from atmospheric turbulence, blur, low-resolution, unconstrained poses, and poor illumination. In this paper, we provide a brief survey of recent advances in person recognition at a distance. In particular, we review recent work in multi-spectral face verification, person re-identification, and gait-based analysis techniques. Furthermore, we discuss the merits and drawbacks of existing approaches and identify important, yet under explored challenges for deploying remote person recognition systems in-the-wild.
translated by 谷歌翻译